dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 53490 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
prop-el:author
|
- Celia Hoyles (el)
- Padoa (el)
- Μπέρτραντ Ράσελ (el)
- George Polyá (el)
- Celia Hoyles (el)
- Padoa (el)
- Μπέρτραντ Ράσελ (el)
- George Polyá (el)
|
prop-el:multiline
| |
prop-el:source
|
- How to Solve It, σελ 208 (el)
- Η διαμόρφωση της διδακτέας ύλης της προσέγγισης των μαθητών στην απόδειξη (el)
- Τα Μαθηματικά και οι μεταφυσικοί (el)
- Essai d'une théorie algébrique des nombre entiers, avec une Introduction logique à une théorie déductive qulelconque (el)
- How to Solve It, σελ 208 (el)
- Η διαμόρφωση της διδακτέας ύλης της προσέγγισης των μαθητών στην απόδειξη (el)
- Τα Μαθηματικά και οι μεταφυσικοί (el)
- Essai d'une théorie algébrique des nombre entiers, avec une Introduction logique à une théorie déductive qulelconque (el)
|
prop-el:text
|
- ...όταν ξεκινήσουμε να διατυπώνουμε τη θεωρία, μπορούμε να φανταστούμε ότι τα ακαθόριστα σύμβολα είναι εντελώς άνευ νοήματος και ότι οι προτάσεις χωρίς απόδειξη είναι απλά όροι που επιβάλλονται επί των ακαθόριστων συμβόλων.
Έπειτα το σύστημα των ιδεών που έχουμε αρχικά επιλέξει είναι απλά μια ερμηνεία των ακαθόριστων συμβόλων, αλλά αυτή η ερμηνεία μπορεί να αγνοηθεί από τον αναγνώστη, ο οποίος είναι ελεύθερος να την αντικαταστήσει στο μυαλό του με μια άλλη ερμηνεία...η οποία πληροί τις προϋποθέσεις...
Έτσι, τα λογικά ερωτήματα γίνονται εντελώς ανεξάρτητα από τα εμπειρικά ή τα ψυχολογικά ερωτήματα...
Το σύστημα των ακαθόριστων συμβόλων μπορεί τότε να θεωρηθεί ως η αφαίρεση που λαμβάνεται από τις εξειδικευμένες θεωρίες που προκύπτουν όταν...το σύστημα των απροσδιόριστων συμβόλων αντικαθίσταται διαδοχικά από κάθε μία από τις ερμηνείες... (el)
- Αν η απόδειξη ακολουθεί απλά την πεποίθηση της αλήθειας αντί για να συμβάλλει στην κατασκευή της και βιώνεται μόνο ως επίδειξη από κάτι που είναι γνωστό ότι είναι αλήθεια, είναι πιθανό να παραμείνει άσκοπη και χωρίς νόημα στα μάτια των μαθητών. (el)
- Αν η υπόθεσή μας είναι για το οτιδήποτε, και όχι για ένα ή περισσότερα συγκεκριμένα πράγματα, τότε τα συμπεράσματά μας αποτελούν μαθηματικά. Έτσι, τα μαθηματικά μπορούν να οριστούν ως το αντικείμενο στο οποίο δεν ξέρουμε ποτέ για τι πράγμα μιλάμε, ούτε αν αυτό που λέμε είναι αλήθεια. (el)
- Η Γεωμετρία είναι η επιστήμη της ορθής συλλογιστικής σε ανακριβή στοιχεία (el)
- ...όταν ξεκινήσουμε να διατυπώνουμε τη θεωρία, μπορούμε να φανταστούμε ότι τα ακαθόριστα σύμβολα είναι εντελώς άνευ νοήματος και ότι οι προτάσεις χωρίς απόδειξη είναι απλά όροι που επιβάλλονται επί των ακαθόριστων συμβόλων.
Έπειτα το σύστημα των ιδεών που έχουμε αρχικά επιλέξει είναι απλά μια ερμηνεία των ακαθόριστων συμβόλων, αλλά αυτή η ερμηνεία μπορεί να αγνοηθεί από τον αναγνώστη, ο οποίος είναι ελεύθερος να την αντικαταστήσει στο μυαλό του με μια άλλη ερμηνεία...η οποία πληροί τις προϋποθέσεις...
Έτσι, τα λογικά ερωτήματα γίνονται εντελώς ανεξάρτητα από τα εμπειρικά ή τα ψυχολογικά ερωτήματα...
Το σύστημα των ακαθόριστων συμβόλων μπορεί τότε να θεωρηθεί ως η αφαίρεση που λαμβάνεται από τις εξειδικευμένες θεωρίες που προκύπτουν όταν...το σύστημα των απροσδιόριστων συμβόλων αντικαθίσταται διαδοχικά από κάθε μία από τις ερμηνείες... (el)
- Αν η απόδειξη ακολουθεί απλά την πεποίθηση της αλήθειας αντί για να συμβάλλει στην κατασκευή της και βιώνεται μόνο ως επίδειξη από κάτι που είναι γνωστό ότι είναι αλήθεια, είναι πιθανό να παραμείνει άσκοπη και χωρίς νόημα στα μάτια των μαθητών. (el)
- Αν η υπόθεσή μας είναι για το οτιδήποτε, και όχι για ένα ή περισσότερα συγκεκριμένα πράγματα, τότε τα συμπεράσματά μας αποτελούν μαθηματικά. Έτσι, τα μαθηματικά μπορούν να οριστούν ως το αντικείμενο στο οποίο δεν ξέρουμε ποτέ για τι πράγμα μιλάμε, ούτε αν αυτό που λέμε είναι αλήθεια. (el)
- Η Γεωμετρία είναι η επιστήμη της ορθής συλλογιστικής σε ανακριβή στοιχεία (el)
|
prop-el:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:label
|
- Ευκλείδεια γεωμετρία (el)
- Ευκλείδεια γεωμετρία (el)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is foaf:primaryTopic
of | |