In the mathematical discipline of functional analysis, a differentiable vector-valued function from Euclidean space is a differentiable function valued in a topological vector space (TVS) whose domains is a subset of some finite-dimensional Euclidean space. It is possible to generalize the notion of derivative to functions whose domain and codomain are subsets of arbitrary topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-valued function is a subset of a finite-dimensional Euclidean space then many of these notions become logically equivalent resulting in a much more limited number of generalizations of the derivative and additionally, differentiability is also more well-behaved compared to the general case. This article presents the theory of -times continuou
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
rdfs:seeAlso | |
dbp:wikiPageUsesTemplate |
|
Subject | |
prov:wasDerivedFrom | |
Wikipage page ID |
|
page length (characters) of wiki page |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
has abstract |
|
foaf:isPrimaryTopicOf | |
is rdfs:seeAlso of | |
is Wikipage redirect of | |
is Link from a Wikipage to another Wikipage of | |
is foaf:primaryTopic of |