About: Differentiable function     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Disease, within Data Space : el.dbpedia.org associated with source document(s)

In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp.

AttributesValues
rdf:type
rdfs:label
  • Differentiable function (en)
rdfs:comment
  • In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. (en)
rdfs:seeAlso
sameAs
dbp:wikiPageUsesTemplate
Subject
thumbnail
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Absolute_value.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Approximation_of_cos_with_linear_functions_without_numbers.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Cusp_at_(0,0.5).svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Polynomialdeg3.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/The_function_x%5E2*sin(1_over_x).svg
gold:hypernym
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x0 is an interior point in the domain of a function f, then f is said to be differentiable at x0 if the derivative exists. In other words, the graph of f has a non-vertical tangent line at the point (x0, f(x0)). (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software