About: Descendant tree (group theory)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In mathematics, specifically group theory, a descendant tree is a hierarchical structure that visualizes parent-descendant relations between isomorphism classes of finite groups of prime power order , for a fixed prime number and varying integer exponents . Such groups are briefly called finite p-groups. The vertices of a descendant tree are isomorphism classes of finite p-groups.

AttributesValues
rdfs:label
  • Descendant tree (group theory) (en)
rdfs:comment
  • In mathematics, specifically group theory, a descendant tree is a hierarchical structure that visualizes parent-descendant relations between isomorphism classes of finite groups of prime power order , for a fixed prime number and varying integer exponents . Such groups are briefly called finite p-groups. The vertices of a descendant tree are isomorphism classes of finite p-groups. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
thumbnail
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Terminology_of_trees.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/TreeOf2Groups.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/TreeOf2Groups222.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/TreeOf3Groups.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/TreeOf3Groups39.png
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In mathematics, specifically group theory, a descendant tree is a hierarchical structure that visualizes parent-descendant relations between isomorphism classes of finite groups of prime power order , for a fixed prime number and varying integer exponents . Such groups are briefly called finite p-groups. The vertices of a descendant tree are isomorphism classes of finite p-groups. Additionally to their order , finite p-groups have two further related invariants, the nilpotency class and the coclass . It turned out that descendant trees of a particular kind, the so-called pruned coclass trees whose infinitely many vertices share a common coclass , reveal a repeating finite pattern. These two crucial properties of finiteness and periodicity admit a characterization of all members of the tree by finitely many parametrized presentations. Consequently, descendant trees play a fundamental role in the classification of finite p-groups. By means of kernels and targets of Artin transfer homomorphisms, descendant trees can be endowed with additional structure. An important question is how the descendant tree can actually be constructed for an assigned starting group which is taken as the root of the tree. The p-group generation algorithm is a recursive process for constructing the descendant tree of a given finite p-group playing the role of the tree root. This algorithm is implemented in the computational algebra systems GAP and Magma. (en)
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 902 MB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software