About: Analyticity of holomorphic functions     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In complex analysis a complex-valued function ƒ of a complex variable z: * is said to be holomorphic at a point a if it is differentiable at every point within some open disk centered at a, and * is said to be analytic at a if in some open disk centered at a it can be expanded as a convergent power series(this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic. Among the corollaries of this theorem are

AttributesValues
rdfs:label
  • Analyticity of holomorphic functions (en)
rdfs:comment
  • In complex analysis a complex-valued function ƒ of a complex variable z: * is said to be holomorphic at a point a if it is differentiable at every point within some open disk centered at a, and * is said to be analytic at a if in some open disk centered at a it can be expanded as a convergent power series(this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic. Among the corollaries of this theorem are (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In complex analysis a complex-valued function ƒ of a complex variable z: * is said to be holomorphic at a point a if it is differentiable at every point within some open disk centered at a, and * is said to be analytic at a if in some open disk centered at a it can be expanded as a convergent power series(this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic. Among the corollaries of this theorem are * the identity theorem that two holomorphic functions that agree at every point of an infinite set S with an accumulation point inside the intersection of their domains also agree everywhere in every connected open subset of their domains that contains the set S, and * the fact that, since power series are infinitely differentiable, so are holomorphic functions (this is in contrast to the case of real differentiable functions), and * the fact that the radius of convergence is always the distance from the center a to the nearest singularity; if there are no singularities (i.e., if ƒ is an entire function), then the radius of convergence is infinite. Strictly speaking, this is not a corollary of the theorem but rather a by-product of the proof. * no bump function on the complex plane can be entire. In particular, on any connected open subset of the complex plane, there can be no bump function defined on that set which is holomorphic on the set. This has important ramifications for the study of complex manifolds, as it precludes the use of partitions of unity. In contrast the partition of unity is a tool which can be used on any real manifold. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software