About: Non-autonomous system (mathematics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In mathematics, an autonomous system is a dynamic equation on a smooth manifold. A non-autonomous system is a dynamic equation on a smooth fiber bundle over . For instance, this is the case of non-autonomous mechanics. An r-order differential equation on a fiber bundle is represented by a closed subbundle of a jet bundle of . A dynamic equation on is a differential equation which is algebraically solved for a higher-order derivatives. For instance, this is the case of Hamiltonian non-autonomous mechanics. A second-order dynamic equation

AttributesValues
rdfs:label
  • Non-autonomous system (mathematics) (en)
rdfs:comment
  • In mathematics, an autonomous system is a dynamic equation on a smooth manifold. A non-autonomous system is a dynamic equation on a smooth fiber bundle over . For instance, this is the case of non-autonomous mechanics. An r-order differential equation on a fiber bundle is represented by a closed subbundle of a jet bundle of . A dynamic equation on is a differential equation which is algebraically solved for a higher-order derivatives. For instance, this is the case of Hamiltonian non-autonomous mechanics. A second-order dynamic equation (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In mathematics, an autonomous system is a dynamic equation on a smooth manifold. A non-autonomous system is a dynamic equation on a smooth fiber bundle over . For instance, this is the case of non-autonomous mechanics. An r-order differential equation on a fiber bundle is represented by a closed subbundle of a jet bundle of . A dynamic equation on is a differential equation which is algebraically solved for a higher-order derivatives. In particular, a first-order dynamic equation on a fiber bundle is a kernel of the covariant differential of some connection on . Given bundle coordinates on and the adapted coordinates on a first-order jet manifold , a first-order dynamic equation reads For instance, this is the case of Hamiltonian non-autonomous mechanics. A second-order dynamic equation on is defined as a holonomicconnection on a jet bundle . Thisequation also is represented by a connection on an affine jet bundle . Due to the canonicalembedding , it is equivalent to a geodesic equationon the tangent bundle of . A free motion equation in non-autonomous mechanics exemplifies a second-order non-autonomous dynamic equation. (en)
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software