Matroid-constrained number partitioning is a variant of the multiway number partitioning problem, in which the subsets in the partition should be independent sets of a matroid. The input to this problem is a set S of items, a positive integer m, and some m matroids over the same set S. The goal is to partition S into m subsets, such that each subset i is an independent set in matroid i. Subject to this constraint, some objective function should be minimized, for example, minimizing the largest sum item sizes in a subset. In a more general variant, each of the m matroids has a weight function, which assigns a weight to each element of the ground-set. Various objective functions have been considered. For each of the three operators max,min,sum, one can use this operator on the weights of ite
Attributes | Values |
---|
rdfs:label
| - Matroid-constrained number partitioning (en)
|
rdfs:comment
| - Matroid-constrained number partitioning is a variant of the multiway number partitioning problem, in which the subsets in the partition should be independent sets of a matroid. The input to this problem is a set S of items, a positive integer m, and some m matroids over the same set S. The goal is to partition S into m subsets, such that each subset i is an independent set in matroid i. Subject to this constraint, some objective function should be minimized, for example, minimizing the largest sum item sizes in a subset. In a more general variant, each of the m matroids has a weight function, which assigns a weight to each element of the ground-set. Various objective functions have been considered. For each of the three operators max,min,sum, one can use this operator on the weights of ite (en)
|
dbp:wikiPageUsesTemplate
| |
Subject
| |
prov:wasDerivedFrom
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
has abstract
| - Matroid-constrained number partitioning is a variant of the multiway number partitioning problem, in which the subsets in the partition should be independent sets of a matroid. The input to this problem is a set S of items, a positive integer m, and some m matroids over the same set S. The goal is to partition S into m subsets, such that each subset i is an independent set in matroid i. Subject to this constraint, some objective function should be minimized, for example, minimizing the largest sum item sizes in a subset. In a more general variant, each of the m matroids has a weight function, which assigns a weight to each element of the ground-set. Various objective functions have been considered. For each of the three operators max,min,sum, one can use this operator on the weights of items in each subset, and on the subsets themselves. All in all, there are 9 possible objective functions, each of which can be maximized or minimized. (en)
|
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |