"4242"^^ . . . "The Kleitman\u2013Wang algorithms are two different algorithms in graph theory solving the digraph realization problem, i.e. the question if there exists for a finite list of nonnegative integer pairs a simple directed graph such that its degree sequence is exactly this list. For a positive answer the list of integer pairs is called digraphic. Both algorithms construct a special solution if one exists or prove that one cannot find a positive answer. These constructions are based on recursive algorithms. Kleitman and Wang gave these algorithms in 1973."@en . . . . . . . . . . . . . "1067657052"^^ . . "The Kleitman\u2013Wang algorithms are two different algorithms in graph theory solving the digraph realization problem, i.e. the question if there exists for a finite list of nonnegative integer pairs a simple directed graph such that its degree sequence is exactly this list. For a positive answer the list of integer pairs is called digraphic. Both algorithms construct a special solution if one exists or prove that one cannot find a positive answer. These constructions are based on recursive algorithms. Kleitman and Wang gave these algorithms in 1973."@en . "Kleitman\u2013Wang algorithms"@en . . . "43237093"^^ . . .