This HTML5 document contains 20 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n8http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Schwarz_alternating_method
rdf:type
dbo:Software
rdfs:label
Schwarz alternating method
rdfs:comment
In mathematics, the Schwarz alternating method or alternating process is an iterative method introduced in 1869–1870 by Hermann Schwarz in the theory of conformal mapping. Given two overlapping regions in the complex plane in each of which the Dirichlet problem could be solved, Schwarz described an iterative method for solving the Dirichlet problem in their union, provided their intersection was suitably well behaved. This was one of several constructive techniques of conformal mapping developed by Schwarz as a contribution to the problem of uniformization, posed by Riemann in the 1850s and first resolved rigorously by Koebe and Poincaré in 1907. It furnished a scheme for uniformizing the union of two regions knowing how to uniformize each of them separately, provided their intersection wa
owl:sameAs
freebase:m.03wf2bt yago-res:Schwarz_alternating_method
dbp:wikiPageUsesTemplate
dbt:Numerical_PDE dbt:Short_description dbt:Springer dbt:Math dbt:Citation
dct:subject
dbc:Conformal_mappings dbc:Domain_decomposition_methods dbc:Harmonic_functions
gold:hypernym
dbr:Method
prov:wasDerivedFrom
n8:Schwarz_alternating_method?oldid=1035276077&ns=0
dbo:wikiPageID
16252015
dbo:wikiPageLength
9077
dbo:wikiPageRevisionID
1035276077
dbo:abstract
In mathematics, the Schwarz alternating method or alternating process is an iterative method introduced in 1869–1870 by Hermann Schwarz in the theory of conformal mapping. Given two overlapping regions in the complex plane in each of which the Dirichlet problem could be solved, Schwarz described an iterative method for solving the Dirichlet problem in their union, provided their intersection was suitably well behaved. This was one of several constructive techniques of conformal mapping developed by Schwarz as a contribution to the problem of uniformization, posed by Riemann in the 1850s and first resolved rigorously by Koebe and Poincaré in 1907. It furnished a scheme for uniformizing the union of two regions knowing how to uniformize each of them separately, provided their intersection was topologically a disk or an annulus. From 1870 onwards Carl Neumann also contributed to this theory. In the 1950s Schwarz's method was generalized in the theory of partial differential equations to an iterative method for finding the solution of an elliptic boundary value problem on a domain which is the union of two overlapping subdomains. It involves solving the boundary value problem on each of the two subdomains in turn, taking always the last values of the approximate solution as the next boundary conditions. It is used in numerical analysis, under the name multiplicative Schwarz method (in opposition to additive Schwarz method) as a domain decomposition method.
foaf:isPrimaryTopicOf
n8:Schwarz_alternating_method