This HTML5 document contains 27 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Schröder–Bernstein_theorem
rdfs:label
Schröder–Bernstein theorem
rdfs:comment
In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : A → B and g : B → A between the sets A and B, then there exists a bijective function h : A → B. In terms of the cardinality of the two sets, this classically implies that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipotent. This is a useful feature in the ordering of cardinal numbers.
owl:sameAs
freebase:m.015x7k
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Nlab dbt:Cite_journal dbt:! dbt:Math dbt:Clear dbt:MathWorld dbt:Mr dbt:Citizendium dbt:Mathematical_logic dbt:Set_theory dbt:Logic dbt:Reflist dbt:Color
dct:subject
dbc:Cardinal_numbers dbc:Theorems_in_the_foundations_of_mathematics dbc:Articles_containing_proofs
gold:hypernym
dbr:Equipollent
prov:wasDerivedFrom
n13:Schröder–Bernstein_theorem?oldid=1065891311&ns=0
dbo:wikiPageID
44218028
dbo:wikiPageLength
17545
dbo:wikiPageRevisionID
1065891311
dbo:abstract
In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : A → B and g : B → A between the sets A and B, then there exists a bijective function h : A → B. In terms of the cardinality of the two sets, this classically implies that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipotent. This is a useful feature in the ordering of cardinal numbers. The theorem is named after Felix Bernstein and Ernst Schröder. It is also known as Cantor–Bernstein theorem, or Cantor–Schröder–Bernstein, after Georg Cantor who first published it without proof.
foaf:isPrimaryTopicOf
n13:Schröder–Bernstein_theorem