This HTML5 document contains 14 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n12http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Sammon_mapping
rdfs:label
Sammon mapping
rdfs:comment
Sammon mapping or Sammon projection is an algorithm that maps a high-dimensional space to a space of lower dimensionality (see multidimensional scaling) by trying to preserve the structure of inter-point distances in high-dimensional space in the lower-dimension projection. It is particularly suited for use in exploratory data analysis. The method was proposed by John W. Sammon in 1969. Denote the distance between ith and jth objects in the original space by , and the distance between their projections by .
owl:sameAs
yago-res:Sammon_mapping freebase:m.03c2dhq
dbp:wikiPageUsesTemplate
dbt:Statistics-stub dbt:Reflist
dct:subject
dbc:Dimension_reduction dbc:Functions_and_mappings
prov:wasDerivedFrom
n12:Sammon_mapping?oldid=1058789811&ns=0
dbo:wikiPageID
13345571
dbo:wikiPageLength
4152
dbo:wikiPageRevisionID
1058789811
dbo:abstract
Sammon mapping or Sammon projection is an algorithm that maps a high-dimensional space to a space of lower dimensionality (see multidimensional scaling) by trying to preserve the structure of inter-point distances in high-dimensional space in the lower-dimension projection. It is particularly suited for use in exploratory data analysis. The method was proposed by John W. Sammon in 1969. It is considered a non-linear approach as the mapping cannot be represented as a linear combination of the original variables as possible in techniques such as principal component analysis, which also makes it more difficult to use for classification applications. Denote the distance between ith and jth objects in the original space by , and the distance between their projections by . Sammon's mapping aims to minimize the following error function, which is often referred to as Sammon's stress or Sammon's error: The minimization can be performed either by gradient descent, as proposed initially, or by other means, usually involving iterative methods. The number of iterations needs to be experimentally determined and convergent solutions are not always guaranteed. Many implementations prefer to use the first Principal Components as a starting configuration. The Sammon mapping has been one of the most successful nonlinear metric multidimensional scaling methods since its advent in 1969, but effort has been focused on algorithm improvement rather than on the form of the stress function. The performance of the Sammon mapping has been improved by extending its stress function using left Bregman divergence and right Bregman divergence.
foaf:isPrimaryTopicOf
n12:Sammon_mapping