This HTML5 document contains 12 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n9http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Quantum_finite_automaton
rdfs:label
Quantum finite automaton
rdfs:comment
In quantum computing, quantum finite automata (QFA) or quantum state machines are a quantum analog of probabilistic automata or a Markov decision process. They provide a mathematical abstraction of real-world quantum computers. Several types of automata may be defined, including measure-once and measure-many automata. Quantum finite automata can also be understood as the quantization of subshifts of finite type, or as a quantization of Markov chains. QFAs are, in turn, special cases of geometric finite automata or topological finite automata.
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Quantum_computing
dct:subject
dbc:Finite_automata dbc:Quantum_information_theory
prov:wasDerivedFrom
n9:Quantum_finite_automaton?oldid=973829519&ns=0
dbo:wikiPageID
7926008
dbo:wikiPageLength
22370
dbo:wikiPageRevisionID
973829519
dbo:abstract
In quantum computing, quantum finite automata (QFA) or quantum state machines are a quantum analog of probabilistic automata or a Markov decision process. They provide a mathematical abstraction of real-world quantum computers. Several types of automata may be defined, including measure-once and measure-many automata. Quantum finite automata can also be understood as the quantization of subshifts of finite type, or as a quantization of Markov chains. QFAs are, in turn, special cases of geometric finite automata or topological finite automata. The automata work by receiving a finite-length string of letters from a finite alphabet , and assigning to each such string a probability indicating the probability of the automaton being in an accept state; that is, indicating whether the automaton accepted or rejected the string. The languages accepted by QFAs are not the regular languages of deterministic finite automata, nor are they the stochastic languages of probabilistic finite automata. Study of these quantum languages remains an active area of research.
foaf:isPrimaryTopicOf
n9:Quantum_finite_automaton