This HTML5 document contains 25 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n14http://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Probabilistic_method
rdf:type
dbo:Software
rdfs:label
Probabilistic method
rdfs:comment
The probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects from a specified class, the probability that the result is of the prescribed kind is strictly greater than zero. Although the proof uses probability, the final conclusion is determined for certain, without any possible error.
owl:sameAs
freebase:m.017dmx yago-res:Probabilistic_method
dbp:wikiPageUsesTemplate
dbt:= dbt:Efn dbt:Cite_journal dbt:ISBN dbt:Portal dbt:Mvar dbt:Notelist dbt:Short_description dbt:Isbn dbt:Math
dct:subject
dbc:Probabilistic_arguments dbc:Combinatorics dbc:Mathematical_proofs
gold:hypernym
dbr:Method
prov:wasDerivedFrom
n14:Probabilistic_method?oldid=1066963110&ns=0
dbo:wikiPageID
173525
dbo:wikiPageLength
11449
dbo:wikiPageRevisionID
1066963110
dbo:abstract
The probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects from a specified class, the probability that the result is of the prescribed kind is strictly greater than zero. Although the proof uses probability, the final conclusion is determined for certain, without any possible error. This method has now been applied to other areas of mathematics such as number theory, linear algebra, and real analysis, as well as in computer science (e.g. randomized rounding), and information theory.
foaf:isPrimaryTopicOf
n14:Probabilistic_method