This HTML5 document contains 19 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n4http://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Permutation_pattern
rdfs:label
Permutation pattern
rdfs:comment
In combinatorial mathematics and theoretical computer science, a permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of digits representing the result of applying the permutation to the digit sequence 123...; for instance the digit sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number pi), then π is said to contain σ as a pattern if some subsequence of the digits of π has the same relative order as all of the digits of σ.
owl:sameAs
freebase:m.07sb9_k yago-res:Permutation_pattern
dbp:wikiPageUsesTemplate
dbt:Radic dbt:OEIS_link dbt:Commonscat dbt:Reflist dbt:Harvs dbt:Harvtxt dbt:Main dbt:Main_article
dct:subject
dbc:Permutation_patterns
prov:wasDerivedFrom
n4:Permutation_pattern?oldid=1060544162&ns=0
dbo:wikiPageID
24360911
dbo:wikiPageLength
32226
dbo:wikiPageRevisionID
1060544162
dbo:abstract
In combinatorial mathematics and theoretical computer science, a permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of digits representing the result of applying the permutation to the digit sequence 123...; for instance the digit sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number pi), then π is said to contain σ as a pattern if some subsequence of the digits of π has the same relative order as all of the digits of σ. For instance, permutation π contains the pattern 213 whenever π has three digits x, y, and z that appear within π in the order x...y...z but whose values are ordered as y < x < z, the same as the ordering of the values in the permutation 213. The permutation 32415 on five elements contains 213 as a pattern in several different ways: 3··15, ··415, 32··5, 324··, and ·2·15 all form triples of digits with the same ordering as 213. Each of the subsequences 315, 415, 325, 324, and 215 is called a copy, instance, or occurrence of the pattern. The fact that π contains σ is written more concisely as σ ≤ π. If a permutation π does not contain a pattern σ, then π is said to avoid σ. The permutation 51342 avoids 213; it has 10 subsequences of three digits, but none of these 10 subsequences has the same ordering as 213.
foaf:isPrimaryTopicOf
n4:Permutation_pattern