This HTML5 document contains 47 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n10http://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Necklace_(combinatorics)
rdfs:label
Necklace (combinatorics)
rdfs:comment
In combinatorics, a k-ary necklace of length n is an equivalence class of n-character strings over an alphabet of size k, taking all rotations as equivalent. It represents a structure with n circularly connected beads which have k available colors. Formally, one may represent a necklace as an orbit of the cyclic group acting on n-character strings over an alphabet of size k, and a bracelet as an orbit of the dihedral group. One can count these orbits, and thus necklaces and bracelets, using Pólya's enumeration theorem.
owl:sameAs
freebase:m.0fxrl_
dbp:wikiPageUsesTemplate
dbt:MathWorld dbt:Reflist dbt:OEIS dbt:Sfrac dbt:Main
dct:subject
dbc:Combinatorics_on_words dbc:Enumerative_combinatorics
gold:hypernym
dbr:Class
prov:wasDerivedFrom
n10:Necklace_(combinatorics)?oldid=1066490505&ns=0
dbo:wikiPageID
6226587
dbo:wikiPageLength
7147
dbo:wikiPageRevisionID
1066490505
dbo:wikiPageWikiLink
dbr:Dihedral_group dbr:Atonality n6:Partition_necklaces_by_integer_partition.svg dbc:Enumerative_combinatorics dbc:Combinatorics_on_words dbr:Combinatorics dbr:Stirling_numbers_of_the_second_kind dbr:String_(computer_science) dbr:Equivalence_class dbr:Euler's_totient_function dbr:Circular_shift n6:Tantrix_tiles_ryg.svg dbr:Necklace_polynomial dbr:Permutation dbr:Necklace_problem dbr:Inversion_(discrete_mathematics) dbr:Necklace_splitting_problem dbr:Pólya_enumeration_theorem dbr:Lyndon_word dbr:Proofs_of_Fermat's_little_theorem n6:Bracelets33.svg dbr:Group_action dbr:Möbius_function dbr:Forte_number dbr:Möbius_inversion_formula dbr:Alphabet_(formal_languages) dbr:Binomial_coefficient n6:Bracelets222.svg dbr:Multiset dbr:Cyclic_group
dbo:abstract
In combinatorics, a k-ary necklace of length n is an equivalence class of n-character strings over an alphabet of size k, taking all rotations as equivalent. It represents a structure with n circularly connected beads which have k available colors. A k-ary bracelet, also referred to as a turnover (or free) necklace, is a necklace such that strings may also be equivalent under reflection. That is, given two strings, if each is the reverse of the other, they belong to the same equivalence class. For this reason, a necklace might also be called a fixed necklace to distinguish it from a turnover necklace. Formally, one may represent a necklace as an orbit of the cyclic group acting on n-character strings over an alphabet of size k, and a bracelet as an orbit of the dihedral group. One can count these orbits, and thus necklaces and bracelets, using Pólya's enumeration theorem.
foaf:isPrimaryTopicOf
n10:Necklace_(combinatorics)