This HTML5 document contains 49 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Markov_partition
rdf:type
dbo:Software
rdfs:label
Markov partition
rdfs:comment
A Markov partition in mathematics is a tool used in dynamical systems theory, allowing the methods of symbolic dynamics to be applied to the study of hyperbolic dynamics. By using a Markov partition, the system can be made to resemble a discrete-time Markov process, with the long-term dynamical characteristics of the system represented as a Markov shift. The appellation 'Markov' is appropriate because the resulting dynamics of the system obeys the Markov property. The Markov partition thus allows standard techniques from symbolic dynamics to be applied, including the computation of expectation values, correlations, topological entropy, , Fredholm determinants and the like.
owl:sameAs
freebase:m.02rfppf yago-res:Markov_partition
dbp:wikiPageUsesTemplate
dbt:Citation_needed dbt:Technical dbt:Reflist dbt:Cite_book
dct:subject
dbc:Dynamical_systems dbc:Markov_models dbc:Symbolic_dynamics dbc:Diffeomorphisms
gold:hypernym
dbr:Tool
prov:wasDerivedFrom
n13:Markov_partition?oldid=1061621980&ns=0
dbo:wikiPageID
11491735
dbo:wikiPageLength
6462
dbo:wikiPageRevisionID
1061621980
dbo:wikiPageWikiLink
dbr:Topological_zeta_function dbr:Homoclinic_orbit dbr:Torus dbc:Diffeomorphisms dbr:Fredholm_determinant dbr:Shift_operator dbr:Dynamical_system dbr:Mathematics dbr:Cambridge_University_Press dbc:Dynamical_systems dbr:Stable_manifold dbr:Markov_property dbr:Invariant_manifold dbr:Cover_(topology) dbr:Subshift_of_finite_type dbr:Heteroclinic_orbit dbr:Springer_Science+Business_Media dbr:Correlation dbr:Yakov_Sinai dbr:Rufus_Bowen dbr:Dynamical_billiards dbr:Topological_entropy dbr:Hyperbolic_set dbc:Markov_models dbr:Expected_value dbr:Markov_chain dbc:Symbolic_dynamics dbr:Anosov_diffeomorphism dbr:Symbolic_dynamics
dbo:abstract
A Markov partition in mathematics is a tool used in dynamical systems theory, allowing the methods of symbolic dynamics to be applied to the study of hyperbolic dynamics. By using a Markov partition, the system can be made to resemble a discrete-time Markov process, with the long-term dynamical characteristics of the system represented as a Markov shift. The appellation 'Markov' is appropriate because the resulting dynamics of the system obeys the Markov property. The Markov partition thus allows standard techniques from symbolic dynamics to be applied, including the computation of expectation values, correlations, topological entropy, , Fredholm determinants and the like.
foaf:isPrimaryTopicOf
n13:Markov_partition