This HTML5 document contains 129 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13http://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
n8http://sw.cyc.com/concept/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/
n15http://d-nb.info/gnd/

Statements

Subject Item
dbr:Logical_conjunction
rdf:type
owl:Thing
rdfs:label
Logical conjunction
rdfs:comment
In logic, mathematics and linguistics, And is the truth-functional operator of logical conjunction; the and of a set of operands is true if and only if all of its operands are true. The logical connective that represents this operator is typically written as or ⋅ . is true if and only if is true and is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields:
owl:differentFrom
dbr:Turned_v dbr:Exterior_algebra dbr:Lambda dbr:Caret
owl:sameAs
n8:Mx4rgbLR0UdkEdaEZwACs1u19A yago-res:Logical_conjunction n15:4164990-4 freebase:m.04m2t
dbp:wikiPageUsesTemplate
dbt:Logical_connectives dbt:Short_description dbt:Distinguish dbt:Common_logical_symbols dbt:Colbegin dbt:Math dbt:Colend dbt:Anchor dbt:Infobox_logical_connective dbt:Authority_control dbt:Commons_category dbt:Springer dbt:Small dbt:Mathematical_logic dbt:! dbt:Cite_web dbt:Reflist
dct:subject
dbc:Semantics dbc:Logical_connectives
prov:wasDerivedFrom
n13:Logical_conjunction?oldid=1062675403&ns=0
dbo:wikiPageID
18152
dbo:wikiPageLength
16842
dbo:wikiPageRevisionID
1062675403
dbo:wikiPageWikiLink
dbr:Logic dbr:Binary_number n4:Venn0001.svg n4:Venn01.svg dbr:Boolean_function dbr:Commutative_property n4:Venn_0101_0101.svg n4:AND_Gate_diagram.svg dbr:Identity_element n4:Venn0111.svg dbr:De_Morgan's_laws n4:Venn_0000_1111.svg dbr:First-order_logic n4:Venn_0011_1100.svg dbr:Distributive_property dbr:Linguistics dbr:And-inverter_graph dbr:Logical_form dbr:Jan_Łukasiewicz dbr:Boolean_conjunctive_query dbr:Logical_disjunction dbr:Digital_electronics dbr:Conjunction_(grammar) dbr:Mathematics dbr:Fréchet_inequalities dbr:Boolean_domain dbr:Conjunction_elimination dbr:Operation_(mathematics) dbr:Infimum_and_supremum dbr:Control_flow dbr:AND_gate dbr:Conjunction_introduction dbr:Proposition dbr:Intersection_(set_theory) dbr:Curry–Howard_correspondence dbc:Logical_connectives dbr:Negation dbr:Boolean_algebra dbc:Semantics n4:Venn_0011_1111.svg dbr:Logical_connective n4:Venn_0001_0000.svg dbr:Set_theory n4:Venn_0001_0100.svg dbr:IP_address dbr:If_and_only_if n4:Venn_0001_0101.svg dbr:Universal_quantification n4:Venn_0011_0000.svg dbr:Truth_function dbr:Boolean-valued_function n4:Multigrade_operator_AND.svg dbr:Truth_value dbr:Short-circuit_evaluation n4:Venn_1111_1011.svg dbr:Denotation dbr:Vacuous_truth dbr:Arity dbr:Validity_(logic) dbr:Commuting_probability dbr:Bit_array dbr:Associative_property dbr:Natural_language dbr:Product_type dbr:Computer_network dbr:List_of_Boolean_algebra_topics dbr:Subnetwork dbr:Logical_graph dbr:Idempotence dbr:Truth_table n4:Venn_0000_0011.svg n4:Venn_0000_0101.svg dbr:Linearity dbr:SQL dbr:Bent_function dbr:Propositional_calculus dbr:Lattice_(order) dbr:Bitwise_operation dbr:Exclusive_or dbr:Peano–Russell_notation dbr:Monotonic_function n4:Venn_0000_0001.svg n4:Venn_0001_0001.svg dbr:Mask_(computing) dbr:Material_nonimplication dbr:Multiplication dbr:Programming_language n4:Venn_1011_1011.svg dbr:Database dbr:Word dbr:Hadamard_transform dbr:English_language dbr:Polish_notation
dbo:abstract
In logic, mathematics and linguistics, And is the truth-functional operator of logical conjunction; the and of a set of operands is true if and only if all of its operands are true. The logical connective that represents this operator is typically written as or ⋅ . is true if and only if is true and is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English "and". * In programming languages, the short-circuit and control structure. * In set theory, intersection. * In lattice theory, logical conjunction (greatest lower bound). * In predicate logic, universal quantification.
foaf:isPrimaryTopicOf
n13:Logical_conjunction