This HTML5 document contains 88 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n10http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Limit_of_a_sequence
rdf:type
owl:Thing
rdfs:label
Limit of a sequence
rdfs:comment
In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers.
rdfs:seeAlso
dbr:List_of_limits
owl:sameAs
freebase:m.01p_8n yago-res:Limit_of_a_sequence
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Anchor dbt:Császár_General_Topology dbt:For dbt:Visible_anchor dbt:Main dbt:Annotated_link dbt:Calculus_topics dbt:See_also dbt:Sfn dbt:Springer dbt:Refimprove dbt:Reflist dbt:Dugundji_Topology
dct:subject
dbc:Sequences_and_series dbc:Limits_(mathematics)
prov:wasDerivedFrom
n10:Limit_of_a_sequence?oldid=1068228225&ns=0
dbo:wikiPageID
285773
dbo:wikiPageLength
17537
dbo:wikiPageRevisionID
1068228225
dbo:wikiPageWikiLink
dbr:Decimal_representation dbr:Limit_point dbr:Hyperreal_number dbr:Mathematical_analysis dbr:Natural_number dbr:Arithmetic–geometric_mean dbr:Net_(mathematics) dbr:Standard_part_function dbr:E_(mathematical_constant) n6:Converging_Sequence_example.svg dbc:Sequences_and_series dbr:Geometric_series dbr:Isaac_Newton dbr:James_Harkness_(mathematician) dbr:Leucippus dbr:Extended_real_number_line dbr:Real_number dbr:Hyperinteger dbr:Range_of_a_function dbr:Method_of_exhaustion dbr:Complete_metric_space dbr:Joseph-Louis_Lagrange dbr:Hausdorff_space dbr:Topological_space dbr:Continuous_function dbr:Frank_Morley n6:Cauchy_sequence_illustration.svg dbr:Zeno's_paradoxes dbr:Limit_inferior_and_limit_superior dbc:Limits_(mathematics) dbr:Limit_of_a_function dbr:Domain_of_a_function n6:Archimedes_pi.svg dbr:Eudoxus_of_Cnidus dbr:Integer dbr:Bernard_Bolzano dbr:Metric_space dbr:Topological_indistinguishability dbr:Real_analysis dbr:Set-theoretic_limit dbr:Infinitesimal dbr:Richard_Courant dbr:Archimedes dbr:Hypergeometric_function dbr:Democritus dbr:Antiphon_(orator) dbr:Mathematics dbr:Mathematician dbr:Leonhard_Euler dbr:Function_(mathematics) dbr:Carl_Friedrich_Gauss dbr:Squeeze_theorem dbr:Neighbourhood_(mathematics) dbr:Shift_rule dbr:Subspace_topology dbr:Modes_of_convergence dbr:Zeno_of_Elea dbr:Arithmetic dbr:Sequence dbr:Karl_Weierstrass
dbo:abstract
In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers.
foaf:isPrimaryTopicOf
n10:Limit_of_a_sequence