This HTML5 document contains 113 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n9http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n7http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n8http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Hadamard_transform
rdf:type
dbo:Building owl:Thing
rdfs:label
Hadamard transform
rdfs:comment
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on 2m real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The transform is named for the French mathematician Jacques Hadamard (French: [adamaʁ]), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh.
owl:differentFrom
dbr:Walsh_matrix
owl:sameAs
freebase:m.02z01s yago-res:Hadamard_transform
dbp:wikiPageUsesTemplate
dbt:Use_American_English dbt:Redirect-distinguish dbt:IPA-fr dbt:Math dbt:Reflist dbt:Short_description dbt:Radic dbt:Cite_journal dbt:Cite_web dbt:Further
dct:subject
dbc:Transforms dbc:Quantum_algorithms
dbo:thumbnail
n7:1010_0110_Walsh_spectrum_(single_row).svg?width=300
foaf:depiction
n7:1010_0110_Walsh_spectrum_(single_row).svg n7:1010_0110_Walsh_spectrum_(polynomial).svg n7:1010_0110_Walsh_spectrum_(fast_WHT).svg
gold:hypernym
dbr:Example
prov:wasDerivedFrom
n8:Hadamard_transform?oldid=1071136943&ns=0
dbo:wikiPageID
634765
dbo:wikiPageLength
29405
dbo:wikiPageRevisionID
1071136943
dbo:wikiPageWikiLink
dbr:Symmetric_matrix dbr:Base_(exponentiation) dbr:Fast_Walsh–Hadamard_transform dbr:Evolutionary_biology dbr:Pyrimidine dbr:Deutsch–Jozsa_algorithm dbr:Hadamard_matrix dbr:Basis_(linear_algebra) dbr:Bernstein–Vazirani_algorithm dbr:Grover's_algorithm n9:1010_0110_Walsh_spectrum_(fast_WHT).svg dbr:Jerzy_Neyman dbr:Kronecker_product dbr:Hans_Rademacher dbr:Klein_four-group dbr:Binary_number dbr:Algorithm dbr:Maximum_likelihood_estimation dbr:Transition_(genetics) dbr:Maximum_parsimony_(phylogenetics) dbr:Real_number dbr:Linear_map dbr:Walsh_function dbr:Elementary_abelian_group n9:1010_0110_Walsh_spectrum_(polynomial).svg n9:1010_0110_Walsh_spectrum_(single_row).svg dbr:Discrete_Fourier_transform dbr:Pontryagin_duality dbr:Generalized_distributive_law dbr:Identity_matrix dbr:Orthogonal_matrix dbr:Signal_processing dbr:Quantum_computing dbr:Qubit dbr:Joseph_L._Walsh dbr:Consistent_estimator dbr:Hypercomplex_number dbr:Involution_(mathematics) dbr:Mass_spectrometry dbr:Polar_basis dbr:Advanced_Video_Coding dbr:Sum_of_absolute_transformed_differences dbc:Transforms dbr:Cyclic_group dbc:Quantum_algorithms dbr:Locality-sensitive_hashing dbr:Encryption dbr:Character_(mathematics) dbr:Crystallography dbr:Bra–ket_notation dbr:Probabilistic_Turing_machine dbr:Fourier_transform dbr:Long_branch_attraction dbr:Transformation_matrix dbr:Quantum_logic_gate dbr:Jacques_Hadamard dbr:Simon's_problem dbr:Fourier_transform_on_finite_groups dbr:Nuclear_magnetic_resonance dbr:Mathematician dbr:Pseudo-Hadamard_transform dbr:Haar_wavelet dbr:Multiple_sequence_alignment dbr:Recursion dbr:Irrational_number dbr:Phylogenetic_tree dbr:Computational_basis dbr:Phylogenetics dbr:Complex_number dbr:Nucleotide dbr:Newick_format dbr:Models_of_DNA_evolution dbr:Unitary_operator dbr:JPEG_XR dbr:Data_compression dbr:Quantum_Fourier_transform dbr:Substitution_model dbr:Quantum_algorithm dbr:Rotation dbr:Purine dbr:Shor's_algorithm dbr:France dbr:Transversion
dbo:abstract
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on 2m real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size 2 × 2 × ⋯ × 2 × 2. It decomposes an arbitrary input vector into a superposition of Walsh functions. The transform is named for the French mathematician Jacques Hadamard (French: [adamaʁ]), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh.
foaf:isPrimaryTopicOf
n8:Hadamard_transform