This HTML5 document contains 76 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n8http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n11http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Graphical_model
rdf:type
dbo:Person
rdfs:label
Graphical model
rdfs:comment
A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.
owl:sameAs
freebase:m.029k49 yago-res:Graphical_model
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:More_footnotes dbt:Machine_learning dbt:Statistics dbt:About dbt:Main dbt:Reflist dbt:Cite_book dbt:Cite_journal
dct:subject
dbc:Bayesian_statistics dbc:Graphical_models
dbo:thumbnail
n8:Examples_of_an_Undirected_Graph.svg?width=300
foaf:depiction
n8:Graph_model.svg n8:Examples_of_an_Undirected_Graph.svg n8:Example_of_a_Directed_Graph.svg
gold:hypernym
dbr:Model
prov:wasDerivedFrom
n11:Graphical_model?oldid=1048104624&ns=0
dbo:wikiPageID
447298
dbo:wikiPageLength
11152
dbo:wikiPageRevisionID
1048104624
dbo:wikiPageWikiLink
dbr:Conditional_random_field dbr:Variable-order_Markov_model dbr:Low-density_parity-check_code dbr:Random_field n9:Examples_of_an_Undirected_Graph.svg dbr:Probability_theory dbr:Tree_(graph_theory) dbr:Probability n9:Example_of_a_Directed_Graph.svg dbr:Graphical_models_for_protein_structure dbr:Statistics dbr:Dependency_network_(graphical_model) dbr:Tree_decomposition dbc:Graphical_models dbr:Machine_learning dbr:PLOS_Computational_Biology dbr:Information_extraction dbr:Discriminative_model dbr:Hidden_Markov_model dbr:Joint_probability_distribution dbr:Mixed_graph dbr:Clique_(graph_theory) dbr:Conditional_independence dbr:Graph_(discrete_mathematics) dbr:Ancestral_graph dbr:Random_variable dbr:Restricted_Boltzmann_machine dbr:Factor_graph dbr:Computer_vision dbr:Generative_model dbr:Bayesian_network dbc:Bayesian_statistics dbr:Conditional_dependence dbr:Morgan_Kaufmann_Publishers dbr:Causal_inference dbr:Structural_equation_modeling dbr:Gene_regulatory_network dbr:Bipartite_graph dbr:Plate_notation n9:Graph_model.svg dbr:Speech_recognition dbr:Markov_random_field dbr:Bayesian_statistics dbr:Belief_propagation dbr:Statistical_model dbr:Naive_Bayes_classifier dbr:Directed_acyclic_graph dbr:Junction_tree_algorithm dbr:Neural_network
dbo:abstract
A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.
foaf:isPrimaryTopicOf
n11:Graphical_model