This HTML5 document contains 232 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n6http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n10http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Gosset–Elte_figures
rdf:type
dbo:Band
rdfs:label
Gosset–Elte figures
rdfs:comment
In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams. Rectified simplices are included in the list as limiting cases with k=0. Similarly 0i,j,k represents a bifurcated graph with a central node ringed.
owl:sameAs
freebase:m.011jl3vy
dbp:wikiPageUsesTemplate
dbt:Citation dbt:CDD dbt:Cite_journal dbt:ISBN dbt:Reflist
dct:subject
dbc:Polytopes
dbo:thumbnail
n6:E8Petrie.svg?width=300
foaf:depiction
n6:10-demicube.svg n6:7-orthoplex_B6.svg n6:2_41_polytope_petrie.svg n6:5-demicube.svg n6:9-demicube.svg n6:6-simplex_t0.svg n6:5-cube_t2_B4.svg n6:9-simplex_t3.svg n6:Up2_1_32_t1_E7.svg n6:Up_1_22_t1_E6.svg n6:9-simplex_t4.svg n6:E8Petrie.svg n6:10-cube_t2_B9.svg n6:8-simplex_t1.svg n6:6-orthoplex_B5.svg n6:6-simplex_t1.svg n6:Up2_1_32_t0_E7.svg n6:5-simplex_t0.svg n6:Simply_Laced_Dynkin_Diagrams.svg n6:3-orthoplex.svg n6:9-cube_t2_B8.svg n6:Gosset_2_31_polytope.svg n6:Gosset_1_42_polytope_petrie.svg n6:E7_graph.svg n6:9-simplex_t0.svg n6:Gosset_4_21_polytope_petrie.svg n6:7-cube_t2_B6.svg n6:6-demicube.svg n6:4-simplex_t1.svg n6:5-orthoplex_B4.svg n6:9-simplex_t1.svg n6:9-simplex_t2.svg n6:4-demicube.svg n6:7-simplex_t1.svg n6:8-simplex_t0.svg n6:8-simplex_t3.svg n6:9-orthoplex_B8.svg n6:10-simplex_t4.svg n6:3-demicube.svg n6:4-simplex_t0.svg n6:7-demicube.svg n6:4-cube_t0_B3.svg n6:5-simplex_t2.svg n6:8-orthoplex_B7.svg n6:10-simplex_t1.svg n6:E6_graph.svg n6:Gosset_1_22_polytope.png n6:10-simplex_t2.svg n6:5-simplex_t1.svg n6:10-simplex_t3.svg n6:10-simplex_t0.svg n6:2-simplex_t0.svg n6:8-demicube.svg n6:3-cube_t2_B2.svg n6:6-cube_t2_B5.svg n6:3-simplex_t0.svg n6:10-orthoplex_B9.svg n6:1-simplex_t0.svg n6:7-simplex_t3.svg n6:8-simplex_t2.svg n6:7-simplex_t0.svg n6:6-simplex_t2.svg n6:7-simplex_t2.svg n6:8-cube_t2_B7.svg
gold:hypernym
dbr:Group
prov:wasDerivedFrom
n10:Gosset–Elte_figures?oldid=798177449&ns=0
dbo:wikiPageID
10861304
dbo:wikiPageLength
20939
dbo:wikiPageRevisionID
798177449
dbo:wikiPageWikiLink
dbr:Rectified_6-simplexes n4:3-orthoplex.svg dbr:Rectified_5-cell dbr:Rectified_5-cubes dbr:Rectified_5-simplexes n4:9-simplex_t1.svg dbr:Rectified_10-simplexes n4:9-simplex_t2.svg n4:9-simplex_t3.svg n4:9-simplex_t4.svg n4:7-orthoplex_B6.svg n4:9-demicube.svg n4:8-orthoplex_B7.svg n4:9-cube_t2_B8.svg dbr:5-simplex n4:7-simplex_t1.svg n4:9-orthoplex_B8.svg dbr:Rectified_10-cubes n4:6-orthoplex_B5.svg n4:6-demicube.svg dbr:Norman_Johnson_(mathematician) n4:6-simplex_t1.svg n4:7-demicube.svg dbr:Petrie_polygon n4:5-orthoplex_B4.svg dbr:Rectification_(geometry) n4:3-cube_t2_B2.svg n4:4-demicube.svg n4:Gosset_2_31_polytope.svg dbr:9-simplex n4:5-simplex_t1.svg dbr:2_51_honeycomb dbr:5-orthoplex n4:2_41_polytope_petrie.svg n4:7-simplex_t2.svg n4:7-simplex_t3.svg dbr:2_22_honeycomb dbr:2_31_polytope n4:8-simplex_t2.svg dbr:2_41_polytope n4:8-simplex_t3.svg n4:Gosset_1_22_polytope.png dbr:2_21_polytope n4:E7_graph.svg dbr:9-orthoplex n4:8-simplex_t1.svg n4:6-simplex_t2.svg dbr:9-demicube n4:5-simplex_t2.svg dbr:Uniform_8-polytope n4:10-simplex_t1.svg n4:10-simplex_t2.svg dbr:Uniform_2_k1_polytope n4:10-simplex_t3.svg n4:10-simplex_t4.svg n4:8-demicube.svg dbr:24-cell n4:7-cube_t2_B6.svg dbr:24-cell_honeycomb n4:10-cube_t2_B9.svg dbr:Rectified_1_43_honeycomb n4:10-orthoplex_B9.svg dbr:Rectified_1_52_honeycomb dbr:Uniform_1_k2_polytope dbr:Rectified_3_22_honeycomb n4:4-simplex_t1.svg dbr:Simplex n4:3-demicube.svg n4:Up_1_22_t1_E6.svg dbr:Projection_(linear_algebra) n4:8-cube_t2_B7.svg n4:5-cube_t2_B4.svg dbr:1_32_polytope dbr:1_33_honeycomb dbr:1_42_polytope dbr:1_52_honeycomb dbr:1_22_polytope dbr:10-demicube dbr:Uniform_polytope dbr:Messenger_of_Mathematics n4:Up2_1_32_t1_E7.svg dbr:6-simplex n4:Up2_1_32_t0_E7.svg dbr:10-simplex dbr:5-demicube dbr:ADE_classification n4:Gosset_1_42_polytope_petrie.svg dbr:10-orthoplex dbr:Regular_Polytopes_(book) dbr:5-cell dbr:Uniform_k_21_polytope n4:Gosset_4_21_polytope_petrie.svg n4:9-simplex_t0.svg dbr:6-orthoplex n4:8-simplex_t0.svg n4:5-demicube.svg n4:E6_graph.svg dbr:16-cell dbr:E9_honeycomb dbr:16-cell_honeycomb n4:7-simplex_t0.svg n4:6-simplex_t0.svg n4:5-simplex_t0.svg dbc:Polytopes dbr:3_31_honeycomb dbr:4_31_honeycomb dbr:2_32_honeycomb dbr:3_41_honeycomb dbr:Coxeter–Dynkin_diagram dbr:8-simplex dbr:1_43_honeycomb dbr:Wythoff_construction dbr:Harold_Scott_MacDonald_Coxeter n4:4-simplex_t0.svg dbr:3_21_polytope dbr:Coxeter_group n4:4-cube_t0_B3.svg n4:3-simplex_t0.svg dbr:Geometry dbr:8-orthoplex dbr:Thorold_Gosset n4:6-cube_t2_B5.svg dbr:Emanuel_Lodewijk_Elte n4:Simply_Laced_Dynkin_Diagrams.svg dbr:5_21_honeycomb n4:10-simplex_t0.svg n4:10-demicube.svg dbr:6-demicube dbr:Octahedron n4:2-simplex_t0.svg dbr:Rectified_9-simplexes n4:1-simplex_t0.svg dbr:8-demicube dbr:7-simplex dbr:0_621_honeycomb dbr:7-orthoplex n4:E8Petrie.svg dbr:Demihypercube dbr:Regular_polytope dbr:7-demicube dbr:Tetrahedron dbr:4_21_polytope dbr:Cross-polytope dbr:Rectified_8-simplexes dbr:Rectified_9-cubes dbr:Rectified_7-cubes dbr:Vertex_figure dbr:Rectified_7-simplexes dbr:Rectified_8-cubes dbr:Rectified_6-cubes
dbo:abstract
In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams. The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches. The vertex figure of ki,j is (k − 1)i,j, and each of its facets are represented by subtracting one from one of the nonzero subscripts, i.e. ki − 1,j and ki,j − 1. Rectified simplices are included in the list as limiting cases with k=0. Similarly 0i,j,k represents a bifurcated graph with a central node ringed.
foaf:isPrimaryTopicOf
n10:Gosset–Elte_figures