This HTML5 document contains 142 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n13http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-eshttp://es.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n9http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-zhhttp://zh.dbpedia.org/resource/
n7http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Geodetic_datum
rdf:type
owl:Thing
rdfs:label
Geodetic datum
rdfs:comment
A geodetic datum or geodetic system (also: geodetic reference datum, geodetic reference system, or geodetic reference frame) is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of geodetic coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid
rdfs:seeAlso
dbr:History_of_navigation dbr:Reference_ellipsoid
owl:sameAs
freebase:m.03xnhv yago-res:Geodetic_datum
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Val dbt:Short_description dbt:ISBN dbt:Citation_needed dbt:Cvt dbt:Wiktionary dbt:Further dbt:Geodesy dbt:Main dbt:Cn dbt:See_also dbt:Seealso
dct:subject
dbc:Geodetic_datums
dbo:wikiPageInterLanguageLink
dbpedia-es:Sistema_de_referencia_geodésico dbpedia-zh:大地测量系统
dbo:thumbnail
n9:Chicago_City_Datum.jpg?width=300
foaf:depiction
n9:Chicago_City_Datum.jpg n9:Geocentric_vs_geodetic_latitude.svg n9:1870_Index_Chart_to_GTS_India-1.jpg
prov:wasDerivedFrom
n7:Geodetic_datum?oldid=1074364163&ns=0
dbo:wikiPageID
995417
dbo:wikiPageLength
29229
dbo:wikiPageRevisionID
1074364163
dbo:wikiPageWikiLink
dbr:International_Earth_Rotation_and_Reference_Systems_Service dbr:South_American_Plate dbr:Anglo-French_Survey_(1784–1790) dbr:Scuba_diving dbr:Location dbr:Geographic_information_system dbr:South_Pole dbr:True_north dbr:Trigonometric_survey dbr:Great_Britain dbr:BJS54 dbr:Ordnance_datum dbr:Struve_Geodetic_Arc dbr:North_Pole dbr:Cartography dbr:Ellipsoid dbr:XAS80 dbr:Axes_conventions dbr:Spherical_harmonics dbr:Projected_coordinate_system dbr:Remote_sensing dbr:South_American_Datum dbr:World_Geodetic_System dbr:Jacques_Cassini dbr:Prime_meridian dbc:Geodetic_datums dbr:Meades_Ranch_Triangulation_Station dbr:Equatorial_bulge dbr:Map_projection dbr:Isaac_Newton dbr:GLONASS dbr:Momentum dbr:PZ-90 dbr:Navigation dbr:Vertical_datum dbr:Terrain n13:Chicago_City_Datum.jpg n13:Geocentric_vs_geodetic_latitude.svg dbr:Galileo_(satellite_navigation) dbr:Figure_of_the_Earth dbr:Earth-centered,_Earth-fixed_coordinate_system dbr:Earth-centered_inertial dbr:Restrictions_on_geographic_data_in_China dbr:Ordnance_Survey_National_Grid dbr:Geographic_coordinate_conversion dbr:KGD2002 dbr:Sea_level dbr:Ordnance_Survey dbr:Satellite_navigation dbr:Hong_Kong_Principal_Datum dbr:TWD67 dbr:Local_tangent_plane_coordinates dbr:TWD97 dbr:CGS-2000 dbr:2011_Tōhoku_earthquake_and_tsunami dbr:Minute_and_second_of_arc dbr:Latitude dbr:Tokyo97 dbr:CGCS2000 dbr:Muslims dbr:Frame_of_reference dbr:Geography_of_Mars dbr:European_Terrestrial_Reference_System_1989 dbr:Bathymetry dbr:BeiDou dbr:Ocean dbr:French_Geodesic_Mission_to_Lapland dbr:French_Geodesic_Mission_to_the_Equator dbr:North_American_Datum dbr:Datum_reference dbr:Milestone dbr:Water_level dbr:Principal_Triangulation_of_Great_Britain dbr:National_Geospatial-Intelligence_Agency dbr:Spheroid dbr:Satellite dbr:International_Terrestrial_Reference_System_and_Frame dbr:Plate_tectonics dbr:North_America dbr:Reference_ellipsoid dbr:Marine_chronometer dbr:Cartography_of_France dbr:Geodesy dbr:Longitude dbr:Vertical_position dbr:African_Plate dbr:Global_Positioning_System dbr:Great_Trigonometrical_Survey dbr:Earth_ellipsoid dbr:Mars dbr:Equator dbr:ED50 dbr:John_Harrison dbr:Royal_Observatory,_Greenwich dbr:JGD2011 dbr:United_States_Department_of_Defense dbr:Baidu_Maps dbr:Earth dbr:Geocentric_Datum_of_Australia_1994 dbr:Geodetic_control_network dbr:Geoid dbr:Geodetic_coordinates dbr:Age_of_Enlightenment dbr:Surveying dbr:Kilometre_zero dbr:Geodetic_Reference_System_1980 dbr:Planetary_coordinate_system n13:1870_Index_Chart_to_GTS_India-1.jpg dbr:Elevation
dbo:abstract
A geodetic datum or geodetic system (also: geodetic reference datum, geodetic reference system, or geodetic reference frame) is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of geodetic coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid and datum WGS 84 it uses has supplanted most others in many applications. The WGS 84 is intended for global use, unlike most earlier datums. Before GPS, there was no precise way to measure the position of a location that was far from universal reference points, such as from the Prime Meridian at the Greenwich Observatory for longitude, from the Equator for latitude, or from the nearest coast for sea level. Astronomical and chronological methods have limited precision and accuracy, especially over long distances. Even GPS requires a predefined framework on which to base its measurements, so WGS 84 essentially functions as a datum, even though it is different in some particulars from a traditional standard horizontal or vertical datum. A standard datum specification (whether horizontal or vertical) consists of several parts: a model for Earth's shape and dimensions, such as a reference ellipsoid or a geoid; an origin at which the ellipsoid/geoid is tied to a known (often monumented) location on or inside Earth (not necessarily at 0 latitude 0 longitude); and multiple control points that have been precisely measured from the origin and monumented. Then the coordinates of other places are measured from the nearest control point through surveying. Because the ellipsoid or geoid differs between datums, along with their origins and orientation in space, the relationship between coordinates referred to one datum and coordinates referred to another datum is undefined and can only be approximated. Using local datums, the disparity on the ground between a point having the same horizontal coordinates in two different datums could reach kilometers if the point is far from the origin of one or both datums. This phenomenon is called datum shift. Because Earth is an imperfect ellipsoid, local datums can give a more accurate representation of some specific area of coverage than WGS 84 can. OSGB36, for example, is a better approximation to the geoid covering the British Isles than the global WGS 84 ellipsoid. However, as the benefits of a global system outweigh the greater accuracy, the global WGS 84 datum is becoming increasingly adopted.
foaf:isPrimaryTopicOf
n7:Geodetic_datum