This HTML5 document contains 32 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n10http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n14http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Forensic_statistics
rdf:type
dbo:Software
rdfs:label
Forensic statistics
rdfs:comment
Forensic statistics is the application of probability models and statistical techniques to scientific evidence, such as DNA evidence, and the law. In contrast to "everyday" statistics, to not engender bias or unduly draw conclusions, forensic statisticians report likelihoods as likelihood ratios (LR). This ratio of probabilities is then used by juries or judges to draw inferences or conclusions and decide legal matters. Jurors and judges rely on the strength of a DNA match, given by statistics, to make conclusions and determine guilt or innocence in legal matters.
owl:sameAs
yago-res:Forensic_statistics freebase:m.0wfx1pm
dbp:wikiPageUsesTemplate
dbt:Forensic_science dbt:Empty_section dbt:Reflist
dct:subject
dbc:Forensic_statistics dbc:Forensic_disciplines dbc:Applied_statistics
dbo:thumbnail
n10:Road_traffic_accidents_world_map_-_Death_-_WHO2012.svg?width=300
foaf:depiction
n10:Road_traffic_accidents_world_map_-_Death_-_WHO2012.svg
gold:hypernym
dbr:Application
prov:wasDerivedFrom
n14:Forensic_statistics?oldid=993107671&ns=0
dbo:wikiPageID
40081829
dbo:wikiPageLength
11332
dbo:wikiPageRevisionID
993107671
dbo:wikiPageWikiLink
dbr:Statistical_model dbr:Likelihood_function dbr:Statistics dbr:Genotype_frequency dbr:DNA_profiling dbc:Forensic_disciplines dbr:Product_rule dbc:Applied_statistics dbr:Judge dbr:Electropherogram dbc:Forensic_statistics dbr:Jury
dbo:abstract
Forensic statistics is the application of probability models and statistical techniques to scientific evidence, such as DNA evidence, and the law. In contrast to "everyday" statistics, to not engender bias or unduly draw conclusions, forensic statisticians report likelihoods as likelihood ratios (LR). This ratio of probabilities is then used by juries or judges to draw inferences or conclusions and decide legal matters. Jurors and judges rely on the strength of a DNA match, given by statistics, to make conclusions and determine guilt or innocence in legal matters. In forensic science, the DNA evidence received for DNA profiling often contains a mixture of more than one person's DNA. DNA profiles are generated using a set procedure, however, the interpretation of a DNA profile becomes more complicated when the sample contains a mixture of DNA. Regardless of the number of contributors to the forensic sample, statistics and probabilities must be used to provide weight to the evidence and to describe what the results of the DNA evidence mean. In a single-source DNA profile, the statistic used is termed a random match probability (RMP). RMPs can also be used in certain situations to describe the results of the interpretation of a DNA mixture. Other statistical tools to describe DNA mixture profiles include likelihood ratios (LR) and combined probability of inclusion (CPI), also known as random man not excluded (RMNE). Computer programs have been implemented with forensic DNA statistics for assessing the biological relationships between two or more people. Forensic science uses several approaches for DNA statistics with computer programs such as; match probability, exclusion probability, likelihood ratios, Bayesian approaches, and paternity and kinship testing. Although the precise origin of this term remains unclear, it is apparent that the term was used in the 1980s and 1990s. Among the first forensic statistics conferences were two held in 1991 and 1993.
foaf:isPrimaryTopicOf
n14:Forensic_statistics