This HTML5 document contains 273 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n6http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n11http://dbpedia.org/resource/IBM_System/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n12http://dbpedia.org/resource/UNIVAC_1100/
n4http://commons.wikimedia.org/wiki/Special:FilePath/
n17http://dbpedia.org/resource/CP/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n16http://dbpedia.org/resource/Z/
n10http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Floating-point_arithmetic
rdfs:label
Floating-point arithmetic
rdfs:comment
In computing, floating-point arithmetic (FP) is arithmetic using formulaic representation of real numbers as an approximation to support a trade-off between range and precision. For this reason, floating-point computation is often used in systems with very small and very large real numbers that require fast processing times. In general, a floating-point number is represented approximately with a fixed number of significant digits (the significand) and scaled using an exponent in some fixed base; the base for the scaling is normally two, ten, or sixteen. A number that can be represented exactly is of the following form:
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Citation_needed dbt:Anchor dbt:Redirect dbt:Overline dbt:Cite_book dbt:Cite_journal dbt:Cite_web dbt:Main dbt:Reflist dbt:Fontcolor dbt:Use_dmy_dates dbt:Code dbt:E dbt:Data_types dbt:10%5E dbt:Val dbt:Rp dbt:Ulist dbt:Var dbt:Math dbt:Nowrap_begin dbt:Nowrap_end dbt:Short_description dbt:Mvar dbt:Block_indent dbt:= dbt:Details dbt:Floating-point dbt:Div_col dbt:Div_col_end
dct:subject
dbc:Floating_point dbc:Computer_arithmetic dbc:Articles_with_example_C_code
dbo:thumbnail
n4:Z3_Deutsches_Museum.jpg?width=300
foaf:depiction
n4:FloatingPointPrecisionAugmented.png n4:Z3_Deutsches_Museum.jpg n4:Float_example.svg n4:Konrad_Zuse_(1992).jpg n4:Resistors_in_Parallel.svg n4:A_number_line_representing_single-precision_floating_point's_numbers_and_numbers_that_it_cannot_display.png n4:Quevedo_1917.jpg n4:William_Kahan.jpg
prov:wasDerivedFrom
n10:Floating-point_arithmetic?oldid=1072668935&ns=0
dbo:wikiPageID
11376
dbo:wikiPageLength
120494
dbo:wikiPageRevisionID
1072668935
dbo:wikiPageWikiLink
dbr:Floor_and_ceiling_functions dbr:Cg_(programming_language) dbr:Invertible_matrix dbr:Charles_Babbage n6:Resistors_in_Parallel.svg dbr:Atari dbr:Computational_science dbr:Pi dbr:William_Kahan dbr:Horner's_method dbr:Orders_of_magnitude_(numbers) dbr:Cosmic_distance_ladder dbr:Condition_number dbr:Single_instruction,_multiple_data dbr:Commodore_PET dbr:IAS_machine dbr:C_(programming_language) dbr:Single-precision_floating-point_format dbr:Gal's_accurate_tables dbr:Porting dbr:Experimental_mathematics dbr:Numeral_system dbr:Significant_figures dbr:GNU_MPFR dbr:Machine_learning dbr:IBM_704 dbr:James_H._Wilkinson dbr:Discretization_error dbr:Cambridge_University_Press dbr:Logarithm dbr:Exponentiation dbr:Endianness dbr:Approximation_error dbr:Commutative_property dbr:Distributive_property dbr:Ternary_numeral_system dbr:Sign_function dbr:Z4_(computer) dbr:Python_(programming_language) dbr:Floating-point_arithmetic dbr:Derivative dbr:Significand dbr:Monte_Davidoff dbr:Z3_(computer) dbr:JavaScript dbr:Rounding n11:360 dbr:Two's_complement dbr:C11_(C_standard_revision) n12:2200_series dbr:Floating-point_unit n6:Quevedo_1917.jpg dbr:Decimal_separator dbr:Positional_notation dbr:Al_Hussein_(missile) dbr:Binary_number dbr:Half-precision_floating-point_format dbr:MBASIC dbr:Minifloat dbr:Floating-point_error_mitigation dbr:Library_(computing) dbr:Iterative_refinement dbr:Square_root dbr:Machine_epsilon dbr:Konrad_Zuse n6:Z3_Deutsches_Museum.JPG dbr:John_von_Neumann dbr:MIM-104_Patriot dbr:Trade-off dbr:Booth's_multiplication_algorithm dbr:English_Electric_DEUCE dbr:Decimal_floating_point dbr:IBM_hexadecimal_floating-point dbr:Arbitrary-precision_arithmetic dbr:Continuous_function dbr:Type_punning dbr:TRS-80_Color_Computer dbr:Scientific_calculator dbr:Eigenvalues_and_eigenvectors dbr:TRS-80 dbr:Associative_property dbr:Dynamic_range dbr:Radix dbr:Loss_of_significance dbr:Division_by_zero dbr:Ariane_flight_V88 dbr:Interval_arithmetic n6:A_number_line_representing_single-precision_floating_point's_numbers_and_numbers_that_it_cannot_display.png dbr:Decimal_representation dbr:Division_algorithm dbr:Long_double dbr:Institute_of_Electrical_and_Electronics_Engineers dbr:Hewlett-Packard dbr:Subatomic_scale dbr:Data_structure_alignment dbr:C_data_types dbr:Thread-local_storage dbr:Addison-Wesley dbr:Runtime_system dbr:Decimal32_floating-point_format dbr:Zero_of_a_function dbr:Decimal64_floating-point_format dbr:Computer_algebra_system dbr:Relay dbr:Pilot_ACE dbr:FLOPS dbr:Decimal128_floating-point_format dbr:Round-off_error dbr:Computing dbr:GW-BASIC dbr:Numerical_stability dbr:Z1_(computer) dbr:Real_number dbr:Repeating_decimal dbr:Intel_Fortran_Compiler dbr:Computational_geometry dbr:Double-precision_floating-point_format dbr:Sterbenz_lemma dbr:Setun dbr:Association_for_Computing_Machinery dbr:Birkhäuser dbr:Bill_Gates dbr:National_Physical_Laboratory_(United_Kingdom) dbr:Microsoft_Developer_Network dbr:Logarithmic_number_system dbr:Arithmetic_underflow dbc:Computer_arithmetic dbr:Infinity dbr:Johns_Hopkins_University_Press dbr:Bfloat16_floating-point_format dbr:Numerical_analysis dbr:C99 dbr:Numerical_analyst dbr:Word_(computer_architecture) dbr:Precision_(computer_science) dbr:IBM_BASIC dbr:Extended_precision dbr:MS-DOS n6:Float_example.svg dbr:Error_analysis_(mathematics) dbr:Leonardo_Torres_y_Quevedo dbr:Exclusive_or dbr:Saudi_Arabia dbr:Numerical_linear_algebra dbr:Quadruple-precision_floating-point_format dbr:Cray_T90 dbr:Haskell_(programming_language) dbr:Symmetric_level-index_arithmetic n6:FloatingPointPrecisionAugmented.png dbc:Articles_with_example_C_code dbr:Cray_SV1 dbr:Common_subexpression_elimination dbr:C_Sharp_(programming_language) dbr:Extended_real_number_line dbr:Tapered_floating_point dbr:Coprocessor dbr:Frank_W._J._Olver dbr:NaN n6:Konrad_Zuse_(1992).jpg n16:Architecture dbr:Unit_in_the_last_place dbr:Nvidia dbr:Exception_handling dbr:X86 dbr:Subnormal_number dbr:Financial_calculator dbr:Truncation n17:M dbr:2Sum dbr:Apple_II_series dbr:Concurrency_(computer_science) dbr:Intel_8087 dbr:Bit dbr:IBM_Personal_Computer dbr:Maxima_(software) dbr:Base_(exponentiation) dbr:Computer dbr:Mechanical_computer dbr:Fortran dbr:Analytical_Engine dbr:Io_(moon) dbr:Complex_number dbr:Catastrophic_cancellation dbr:Fixed-point_arithmetic dbr:Archimedes dbr:IEEE_754 dbr:Hexadecimal dbr:Integer dbr:MOS_Technology_6502 dbr:IEEE_754-2008_revision n6:William_Kahan.jpg dbr:Q_(number_format) dbr:Fraction dbr:QuickBASIC dbr:Prentice_Hall dbr:Altair_BASIC dbr:Proton dbr:Hexadecimal_floating_point dbr:14th_Quartermaster_Detachment dbr:Altair_8800 dbr:Motorola_6800 dbr:Motorola_68000 dbr:Maple_(software) dbr:IBM_7090 dbr:Signed_zero dbr:Turing_Award dbr:Intel_8080 dbr:Rational_number dbr:Wolfram_Mathematica dbr:Graphics_processing_unit dbr:Kahan_summation_algorithm dbr:Computable_number dbr:Microsoft_Binary_Format dbr:Motorola_6809 dbr:Compiler dbr:Oxford_University_Press dbr:Jupiter dbr:Interrupt dbr:Dhahran dbr:Exponent_bias dbc:Floating_point dbr:Scientific_notation
dbo:abstract
In computing, floating-point arithmetic (FP) is arithmetic using formulaic representation of real numbers as an approximation to support a trade-off between range and precision. For this reason, floating-point computation is often used in systems with very small and very large real numbers that require fast processing times. In general, a floating-point number is represented approximately with a fixed number of significant digits (the significand) and scaled using an exponent in some fixed base; the base for the scaling is normally two, ten, or sixteen. A number that can be represented exactly is of the following form: where significand is an integer, base is an integer greater than or equal to two, and exponent is also an integer.For example: The term floating point refers to the fact that a number's radix point (decimal point, or, more commonly in computers, binary point) can "float"; that is, it can be placed anywhere relative to the significant digits of the number. This position is indicated as the exponent component, and thus the floating-point representation can be thought of as a kind of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of different orders of magnitude: e.g. the distance between galaxies or the diameter of an atomic nucleus can be expressed with the same unit of length. The result of this dynamic range is that the numbers that can be represented are not uniformly spaced; the difference between two consecutive representable numbers varies with the chosen scale. Over the years, a variety of floating-point representations have been used in computers. In 1985, the IEEE 754 Standard for Floating-Point Arithmetic was established, and since the 1990s, the most commonly encountered representations are those defined by the IEEE. The speed of floating-point operations, commonly measured in terms of FLOPS, is an important characteristic of a computer system, especially for applications that involve intensive mathematical calculations. A floating-point unit (FPU, colloquially a math coprocessor) is a part of a computer system specially designed to carry out operations on floating-point numbers.
foaf:isPrimaryTopicOf
n10:Floating-point_arithmetic