This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n9http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n15http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Fibonacci_polynomials
rdfs:label
Fibonacci polynomials
rdfs:comment
In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.
owl:sameAs
freebase:m.02f_bs yago-res:Fibonacci_polynomials
dbp:wikiPageUsesTemplate
dbt:OEIS_el dbt:SpringerEOM dbt:Cite_book dbt:Cite_journal dbt:Reflist dbt:MathWorld dbt:Main
dct:subject
dbc:Fibonacci_numbers dbc:Polynomials
dbo:thumbnail
n9:PascalTriangleFibanacci.svg?width=300
foaf:depiction
n9:PascalTriangleFibanacci.svg
gold:hypernym
dbr:Sequence
prov:wasDerivedFrom
n15:Fibonacci_polynomials?oldid=1045326729&ns=0
dbo:wikiPageID
483720
dbo:wikiPageLength
8234
dbo:wikiPageRevisionID
1045326729
dbo:wikiPageWikiLink
dbc:Fibonacci_numbers dbc:Polynomials dbr:Pell_number dbr:Lucas_number dbr:Recurrence_relation n11:PascalTriangleFibanacci.svg dbr:Mathematics dbr:Pascal's_triangle dbr:Polynomial dbr:Mathematical_Association_of_America dbr:Imaginary_unit dbr:Fibonacci_number dbr:Polynomial_sequence dbr:Chebyshev_polynomials dbr:Dominoes dbr:Binomial_coefficient dbr:Fibonacci_Quarterly dbr:Generating_function dbr:Lucas_sequence dbr:Composition_(combinatorics)
dbo:abstract
In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.
foaf:isPrimaryTopicOf
n15:Fibonacci_polynomials