This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n10http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Fibonacci_coding
rdf:type
dbo:Film
rdfs:label
Fibonacci coding
rdfs:comment
In mathematics and computing, Fibonacci coding is a universal code which encodes positive integers into binary code words. It is one example of representations of integers based on Fibonacci numbers. Each code word ends with "11" and contains no other instances of "11" before the end.
owl:sameAs
freebase:m.0cwrc yago-res:Fibonacci_coding
dbp:wikiPageUsesTemplate
dbt:Math dbt:Compression_Methods dbt:Cite_book dbt:Cite_journal dbt:Reflist dbt:No_footnotes dbt:Short_description dbt:Numeral_systems dbt:Citation_needed
dct:subject
dbc:Fibonacci_numbers dbc:Lossless_compression_algorithms dbc:Non-standard_positional_numeral_systems
gold:hypernym
dbr:Code
prov:wasDerivedFrom
n10:Fibonacci_coding?oldid=1068730505&ns=0
dbo:wikiPageID
48063
dbo:wikiPageLength
7772
dbo:wikiPageRevisionID
1068730505
dbo:wikiPageWikiLink
dbr:Varicode dbr:Entropy_coding dbc:Lossless_compression_algorithms dbr:Mathematics dbr:Numeral_system dbr:Cambridge_University_Press dbr:Ostrowski_numeration dbr:Generalizations_of_Fibonacci_numbers dbc:Non-standard_positional_numeral_systems dbr:Bit dbr:Edit_distance dbr:Fibonacci_number dbr:Code_word dbr:Self-synchronizing_code dbr:Universal_code_(data_compression) dbr:World_Scientific dbr:Golden_ratio_base dbr:NegaFibonacci_coding dbr:Zeckendorf's_theorem dbc:Fibonacci_numbers dbr:Maximal_entropy_random_walk
dbo:abstract
In mathematics and computing, Fibonacci coding is a universal code which encodes positive integers into binary code words. It is one example of representations of integers based on Fibonacci numbers. Each code word ends with "11" and contains no other instances of "11" before the end. The Fibonacci code is closely related to the Zeckendorf representation, a positional numeral system that uses Zeckendorf's theorem and has the property that no number has a representation with consecutive 1s. The Fibonacci code word for a particular integer is exactly the integer's Zeckendorf representation with the order of its digits reversed and an additional "1" appended to the end.
foaf:isPrimaryTopicOf
n10:Fibonacci_coding