This HTML5 document contains 106 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n13http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n12http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Even_and_odd_functions
rdf:type
owl:Thing dbo:Software
rdfs:label
Even and odd functions
rdfs:comment
In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power series and Fourier series. They are named for the parity of the powers of the power functions which satisfy each condition: the function is an even function if n is an even integer, and it is an odd function if n is an odd integer.
owl:differentFrom
dbr:Even dbr:Parity_(mathematics)
owl:sameAs
freebase:m.02t7y6
dbp:wikiPageUsesTemplate
dbt:Rp dbt:EquationRef dbt:Mvar dbt:Slink dbt:Distinguish dbt:NumBlk dbt:Citation dbt:Reflist dbt:Equation_box_1 dbt:Short_description
dct:subject
dbc:Calculus dbc:Parity_(mathematics) dbc:Types_of_functions
dbo:thumbnail
n13:Sintay_SVG.svg?width=300
foaf:depiction
n13:Sintay_SVG.svg n13:Function_x%5E2.svg n13:Développement_limité_du_cosinus.svg n13:Function-x3plus1.svg n13:Function-x3.svg
gold:hypernym
dbr:Functions
prov:wasDerivedFrom
n12:Even_and_odd_functions?oldid=1063362089&ns=0
dbo:wikiPageID
592151
dbo:wikiPageLength
15533
dbo:wikiPageRevisionID
1063362089
dbo:wikiPageWikiLink
dbr:Function_(mathematics) dbr:Subtraction dbr:Additive_inverse dbr:Periodic_function dbr:Symmetry dbr:Algebra_over_a_field dbr:Field_(mathematics) dbr:Function_composition dbr:Derivative dbr:Harmonic dbr:Differentiable_function dbr:Dirichlet_function dbr:Power_amplifier_classes n9:Sintay_SVG.svg dbr:Absolute_value dbr:Abelian_group dbr:Reflection_(mathematics) dbr:Function_of_a_real_variable dbr:Hermitian_function n9:Développement_limité_du_cosinus.svg dbr:Addition dbr:Amplifier dbr:Triangle_wave dbr:Reciprocal_polynomial dbr:Parity_(mathematics) dbr:Parity_(physics) dbr:Fundamental_frequency dbc:Types_of_functions dbr:Taylor_series dbr:Error_function dbr:Complex_number dbr:Clipping_(audio) dbr:Ring_(mathematics) dbr:Rotation_(mathematics) dbr:Rectifier dbr:Hyperbolic_functions dbr:Trigonometric_functions dbr:Sine_and_cosine dbr:Sine_wave dbr:Linear_combination dbr:Power_series dbr:Direct_sum_of_modules dbr:Division_(mathematics) dbr:Codomain dbr:Graph_of_a_function dbr:Origin_(mathematics) dbr:Degree_(angle) dbr:Domain_of_a_function dbr:Continuous_function dbr:Holstein–Herring_method dbr:Vector_space dbr:Integral dbr:Real_number dbr:Signal_processing dbr:Exponentiation dbr:Linear_subspace dbr:Nonlinear_system dbr:Multiplication dbr:Mathematical_analysis dbr:Mathematics dbr:Fourier_transform dbc:Calculus dbr:Fourier_series dbr:Distortion dbr:Complex_conjugate n9:Function_x%5E2.svg dbc:Parity_(mathematics) dbr:Integer n9:Function-x3.svg dbr:Closure_(mathematics) n9:Function-x3plus1.svg dbr:Graded_ring dbr:Sawtooth_wave
dbo:abstract
In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power series and Fourier series. They are named for the parity of the powers of the power functions which satisfy each condition: the function is an even function if n is an even integer, and it is an odd function if n is an odd integer.
foaf:isPrimaryTopicOf
n12:Even_and_odd_functions