This HTML5 document contains 50 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n5http://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Equiconsistency
rdfs:label
Equiconsistency
rdfs:comment
In mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other".
owl:sameAs
freebase:m.09c9cf yago-res:Equiconsistency
dbp:wikiPageUsesTemplate
dbt:Metalogic dbt:Reflist dbt:Var dbt:Short_description dbt:ISBN
dct:subject
dbc:Mathematical_logic dbc:Large_cardinals
gold:hypernym
dbr:Equiconsistent
prov:wasDerivedFrom
n5:Equiconsistency?oldid=1018408106&ns=0
dbo:wikiPageID
3435716
dbo:wikiPageLength
5258
dbo:wikiPageRevisionID
1018408106
dbo:wikiPageWikiLink
dbr:Reverse_mathematics dbr:Gödel's_incompleteness_theorems dbr:Forcing_(mathematics) dbr:Set_theory dbr:Consistency dbr:Kurt_Gödel dbr:Akihiro_Kanamori dbr:Large_cardinal dbr:Kurepa_tree dbr:Axiom_of_determinacy dbr:Arithmetic dbr:Computably_enumerable dbr:Second-order_arithmetic dbr:David_Hilbert dbr:Primitive_recursive_arithmetic dbr:Aronszajn_tree dbr:Metamathematics dbr:Weakly_compact_cardinal dbr:Continuum_hypothesis dbr:Zermelo–Fraenkel_set_theory dbr:Mathematical_object dbr:Inaccessible_cardinal dbr:Robinson_arithmetic dbr:Peano_axioms dbr:List_of_Latin_phrases_(V) dbc:Large_cardinals dbr:Mahlo_cardinal dbr:Hilbert's_program dbr:Theory_(mathematical_logic) dbr:Mathematical_logic dbc:Mathematical_logic dbr:The_Higher_Infinite
dbo:abstract
In mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory T. Instead we usually take a theory S, believed to be consistent, and try to prove the weaker statement that if S is consistent then T must also be consistent—if we can do this we say that T is consistent relative to S. If S is also consistent relative to T then we say that S and T are equiconsistent.
foaf:isPrimaryTopicOf
n5:Equiconsistency