This HTML5 document contains 22 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13https://web.archive.org/web/20131003135132/http:/tutorialfrenzy.com/
n6http://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Crout_matrix_decomposition
rdfs:label
Crout matrix decomposition
rdfs:comment
In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. The Crout matrix decomposition algorithm differs slightly from the Doolittle method. Doolittle's method returns a unit lower triangular matrix and an upper triangular matrix, while the Crout method returns a lower triangular matrix and a unit upper triangular matrix. So, if a matrix decomposition of a matrix A is such that: A = LDU
owl:sameAs
yago-res:Crout_matrix_decomposition freebase:m.03n33z
dbp:wikiPageUsesTemplate
dbt:Reflist
dct:subject
dbc:Matrix_decompositions
dbo:wikiPageExternalLink
n13:matlab-crout-lu-factorization-linear-equations-systems.php
gold:hypernym
dbr:Decomposition
prov:wasDerivedFrom
n6:Crout_matrix_decomposition?oldid=956132782&ns=0
dbo:wikiPageID
900131
dbo:wikiPageLength
2638
dbo:wikiPageRevisionID
956132782
dbo:wikiPageWikiLink
dbr:Triangular_matrix dbr:Permutation_matrix dbc:Matrix_decompositions dbr:LU_decomposition dbr:Algorithm dbr:Prescott_Durand_Crout dbr:Linear_algebra dbr:Matrix_(mathematics)
dbo:abstract
In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. The Crout matrix decomposition algorithm differs slightly from the Doolittle method. Doolittle's method returns a unit lower triangular matrix and an upper triangular matrix, while the Crout method returns a lower triangular matrix and a unit upper triangular matrix. So, if a matrix decomposition of a matrix A is such that: A = LDU being L a unit lower triangular matrix, D a diagonal matrix and U a unit upper triangular matrix, then Doolittle's method produces A = L(DU) and Crout's method produces A = (LD)U.
foaf:isPrimaryTopicOf
n6:Crout_matrix_decomposition