This HTML5 document contains 97 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n20http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n12https://books.google.com/
n23http://eccc.uni-trier.de/static/books/A_Simple_Introduction_to_Computable_Analysis_Fragments_of_a_Book/
n14http://www.abelard.org/turpap2/
dbthttp://dbpedia.org/resource/Template:
n22https://eudml.org/doc/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n21https://github.com/blambov/
freebasehttp://rdf.freebase.com/ns/
n8http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n17http://doc.rero.ch/record/304204/files/
n16http://en.wikipedia.org/wiki/
n6https://archive.org/details/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Computable_number
rdf:type
dbo:Plant
rdfs:label
Computable number
rdfs:comment
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive reals. Equivalent definitions can be given using μ-recursive functions, Turing machines, or λ-calculus as the formal representation of algorithms. The computable numbers form a real closed field and can be used in the place of real numbers for many, but not all, mathematical purposes.
owl:sameAs
freebase:m.01vfj
dbp:wikiPageUsesTemplate
dbt:Quote dbt:Cite_journal dbt:Cite_book dbt:Reflist dbt:Refbegin dbt:Refend dbt:Cn dbt:Cite_web dbt:Sfnp dbt:Number_systems dbt:Short_description
dct:subject
dbc:Computability_theory dbc:Theory_of_computation
dbo:wikiPageExternalLink
n6:computationfinit0000mins n12:books%3Fid=oN5nsPkXhhsC n14:tp2-ie.asp n17:S0022481200105663.pdf n12:books%3Fid=KqeXZ4pPd5QC&pg=PA363 n21:RealLib n22:281227 n23:
dbo:thumbnail
n8:10,000_digits_of_pi_-_poster.svg?width=300
foaf:depiction
n8:10,000_digits_of_pi_-_poster.svg
gold:hypernym
dbr:Numbers
prov:wasDerivedFrom
n16:Computable_number?oldid=1072601550&ns=0
dbo:wikiPageID
6206
dbo:wikiPageLength
20220
dbo:wikiPageRevisionID
1072601550
dbo:wikiPageWikiLink
dbr:Bijection dbr:Errett_Bishop dbr:Complex_number dbr:Uncountable_set dbr:Chaitin's_constant dbr:Henry_Gordon_Rice dbr:Real_number dbr:Decision_problem dbr:Gödel_numbering dbr:Turing_machine dbr:Order_isomorphism dbr:Specker_sequence dbr:Marvin_Minsky dbr:Cantor's_diagonal_argument dbr:Subcountability dbr:Surjective_function dbr:Real_closed_field dbr:Universal_Turing_machine dbr:Definable_real_number dbr:Hyperarithmetical_theory dbr:Homeomorphism dbr:Lambda_calculus dbr:Nested_intervals dbc:Computability_theory dbr:Computable_function dbr:General_recursive_function dbr:Undecidable_problem dbr:Field_(mathematics) dbr:Computable_analysis dbc:Theory_of_computation dbr:Transcomputational_problem dbr:Approximation_error dbr:Ernst_Specker dbr:Mathematics dbr:Rounding n20:10,000_digits_of_pi_-_poster.svg dbr:Algebraic_number dbr:Infimum_and_supremum dbr:Natural_number dbr:Cube_root dbr:Constructible_number dbr:Semicomputable_function dbr:Modulus_of_convergence dbr:Bounded_function dbr:Rational_number dbr:Algorithm dbr:Countable_set dbr:Dedekind_cut dbr:Totally_disconnected_space dbr:Well-ordering_principle dbr:Computable_algebra dbr:Halting_problem dbr:Measure_(mathematics) dbr:Partial_function dbr:Alan_Turing dbr:Almost_all dbr:Transcendental_number dbr:Dense_order dbr:Injective_function dbr:Turing_degree dbr:Computably_enumerable dbr:Integer dbr:Constructivism_(philosophy_of_mathematics)
dbo:abstract
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive reals. Equivalent definitions can be given using μ-recursive functions, Turing machines, or λ-calculus as the formal representation of algorithms. The computable numbers form a real closed field and can be used in the place of real numbers for many, but not all, mathematical purposes.
foaf:isPrimaryTopicOf
n16:Computable_number