This HTML5 document contains 104 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n13http://www.mathnet.ru/php/
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://dbpedia.org/resource/File:
n18https://books.google.com/
n14http://www.numdam.org/item%3Fid=BSMF_1956__84__97_0%7Cdoi=10.24033/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n12http://commons.wikimedia.org/wiki/Special:FilePath/
n21http://projecteuclid.org/DPubS%3Fservice=UI&version=1.0&verb=Display&handle=euclid.tmj/1178245104%7Cdoi=10.2748/tmj/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n10http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/
n17http://www.numdam.org/numdam-bin/fitem%3Fid=SB_1951-1954__2__447_0%7Caccess-date=2013-03-07%7Carchive-url=https:/web.archive.org/web/20120713022959/http:/www.numdam.org/numdam-bin/

Statements

Subject Item
dbr:Complexification_(Lie_group)
rdfs:label
Complexification (Lie group)
rdfs:comment
In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.
owl:sameAs
freebase:m.0r8k2z_ yago-res:Complexification_(Lie_group)
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Lie_groups dbt:Short_description dbt:= dbt:Mvar dbt:Refbegin dbt:Refend dbt:Reflist dbt:Math dbt:Hidden_begin dbt:Hidden_end dbt:Harvid dbt:Harvtxt
dct:subject
dbc:Algebraic_groups dbc:Lie_algebras dbc:Lie_groups dbc:Representation_theory
dbo:wikiPageExternalLink
n13:archive.phtml%3Fwshow=paper&jrnid=tm&paperid=1100&option_lang=eng%7Clanguage=ru n14:bsmf.1469%7Cdoi-access=free n17:fitem%3Fid=SB_1951-1954__2__447_0%7Carchive-date=2012-07-13%7Curl-status=dead n18:books%3Fid=sTB8CwAAQBAJ n18:books%3Fid=nW9tPZUMkdIC&pg=PR1 n18:books%3Fid=2twDDAAAQBAJ n21:1178245104%7Cdoi-access=free n18:books%3Fid=NwNKDwAAQBAJ&pg=PP1 n18:books%3Fid=JqG-oAEACAAJ
dbo:thumbnail
n12:Complexification-quotient-map.svg?width=300
foaf:depiction
n12:Complexification-quotient-map.svg n12:Universal_property_of_complexification.svg
prov:wasDerivedFrom
n10:Complexification_(Lie_group)?oldid=1058678431&ns=0
dbo:wikiPageID
38635109
dbo:wikiPageLength
52965
dbo:wikiPageRevisionID
1058678431
dbo:wikiPageWikiLink
dbr:Functional_calculus dbr:Gram–Schmidt_process n4:Universal_property_of_complexification.svg dbr:Engel's_theorem dbr:Lorentz_group dbr:Unitary_group dbr:Complex_projective_space dbr:Hermitian_symmetric_space dbr:Universal_property dbr:Natural_transformation dbr:Irreducible_representation dbr:Centralizer_and_normalizer dbr:Complex_Lie_group dbr:Graduate_Texts_in_Mathematics dbr:Bruhat_decomposition dbr:Compact_group dbr:Special_linear_group dbr:Holomorphic_vector_bundle dbr:Induced_representation dbr:Weyl_group dbc:Representation_theory dbr:Tohoku_Mathematical_Journal dbr:Algebraic_geometry_and_analytic_geometry dbr:Holomorphic_function dbr:Algebraic_group dbr:Polar_decomposition dbr:General_linear_group dbr:Covering_group dbr:Nilpotent_group dbr:Mathematics dbr:Coxeter_element dbr:Coxeter_group dbc:Lie_groups dbr:Claude_Chevalley dbc:Lie_algebras dbr:Invariant_theory dbr:Triangular_matrix dbr:Minor_(linear_algebra) dbr:Matrix_coefficient dbr:Coalgebra dbr:Robert_Steinberg dbr:Section_(fiber_bundle) dbr:Weight_(representation_theory) dbr:Lie_algebra dbc:Algebraic_groups dbr:Borel_subgroup dbr:Complexification dbr:LU_decomposition dbr:Double_coset dbr:Semidirect_product n4:Complexification-quotient-map.svg dbr:Armand_Borel dbr:Iwasawa_decomposition dbr:Orbit dbr:Skew-Hermitian_matrix dbr:Orthogonal_group dbr:Borel–de_Siebenthal_theory dbr:Real_form_(Lie_theory) dbr:Hopf_algebra dbr:Lie_group dbr:Special_unitary_group dbr:Borel–Weil–Bott_theorem dbr:Cartan_decomposition dbr:Unitary_representation dbr:Killing_form
dbo:abstract
In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear. For compact Lie groups, the complexification, sometimes called the Chevalley complexification after Claude Chevalley, can be defined as the group of complex characters of the Hopf algebra of representative functions, i.e. the matrix coefficients of finite-dimensional representations of the group. In any finite-dimensional faithful unitary representation of the compact group it can be realized concretely as a closed subgroup of the complex general linear group. It consists of operators with polar decomposition g = u • exp iX, where u is a unitary operator in the compact group and X is a skew-adjoint operator in its Lie algebra. In this case the complexification is a complex algebraic group and its Lie algebra is the complexification of the Lie algebra of the compact Lie group.
foaf:isPrimaryTopicOf
n10:Complexification_(Lie_group)