This HTML5 document contains 60 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n7http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n13http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Cantor's_isomorphism_theorem
rdfs:label
Cantor's isomorphism theorem
rdfs:comment
In order theory and model theory, branches of mathematics, Cantor's isomorphism theorem states that every two countable dense unbounded linear orders are order-isomorphic. It is named after Georg Cantor, and can be proved by the back-and-forth method sometimes attributed to Cantor, but Cantor's original proof only used the "going forth" half of this method.
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Use_list-defined_references dbt:Use_mdy_dates dbt:R dbt:Harvtxt dbt:Short_description
dct:subject
dbc:Order_theory dbc:Model_theory
dbo:thumbnail
n13:Minkowski_question_mark.svg?width=300
foaf:depiction
n13:Minkowski_question_mark.svg
prov:wasDerivedFrom
n10:Cantor's_isomorphism_theorem?oldid=1069783045&ns=0
dbo:wikiPageID
68245955
dbo:wikiPageLength
14513
dbo:wikiPageRevisionID
1069783045
dbo:wikiPageWikiLink
dbr:Baumgartner's_axiom dbr:Suslin's_problem dbr:Power_of_two dbr:Total_order dbc:Model_theory n7:Minkowski_question_mark.svg dbr:Wacław_Sierpiński dbr:Zermelo–Fraenkel_set_theory dbr:Dense_order dbr:Saturated_model dbr:Martin's_axiom dbr:Least-upper-bound_property dbr:Greedy_algorithm dbr:Model_theory dbr:Order_isomorphism dbr:Axiom_of_choice dbr:Rational_number dbc:Order_theory dbr:Bijection dbr:2-transitive_group dbr:Unit_interval dbr:Minkowski's_question-mark_function dbr:Transitive_relation dbr:Parity_(mathematics) dbr:Omega-categorical_theory dbr:Proper_forcing_axiom dbr:Dyadic_rational dbr:Algebraic_number dbr:Order_theory dbr:First-order_logic dbr:Cantor's_first_set_theory_article dbr:Countable_set dbr:Georg_Cantor dbr:Felix_Hausdorff dbr:Continuum_hypothesis dbr:Arithmetic_mean dbr:Real_number dbr:Back-and-forth_method dbr:Piecewise_linear_function dbr:Categorical_theory dbr:Integer dbr:Ordered_pair
dbo:abstract
In order theory and model theory, branches of mathematics, Cantor's isomorphism theorem states that every two countable dense unbounded linear orders are order-isomorphic. It is named after Georg Cantor, and can be proved by the back-and-forth method sometimes attributed to Cantor, but Cantor's original proof only used the "going forth" half of this method.
foaf:isPrimaryTopicOf
n10:Cantor's_isomorphism_theorem