This HTML5 document contains 50 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n17http://www.alcatel-lucent.com/bstj/vol46-1967/articles/
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n12http://www.wolframalpha.com/input/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n6http://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n14http://pari.math.u-bordeaux.fr/dochtml/html-stable/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Berlekamp's_algorithm
rdf:type
dbo:Software
rdfs:label
Berlekamp's algorithm
rdfs:comment
In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967. It was the dominant algorithm for solving the problem until the Cantor–Zassenhaus algorithm of 1981. It is currently implemented in many well-known computer algebra systems.
owl:sameAs
freebase:m.0fmxj7 yago-res:Berlekamp's_algorithm
dbp:wikiPageUsesTemplate
dbt:Cite_book dbt:Reflist dbt:Cite_journal dbt:For
dct:subject
dbc:Computer_algebra dbc:Finite_fields
dbo:wikiPageExternalLink
n12:%3Fi=factor+x%5E5+%2B+x+mod+17 n14:Arithmetic_functions.html%23factormod n17:bstj46-8-1853.pdf
gold:hypernym
dbr:Method
prov:wasDerivedFrom
n6:Berlekamp's_algorithm?oldid=1046493779&ns=0
dbo:wikiPageID
6057100
dbo:wikiPageLength
10385
dbo:wikiPageRevisionID
1046493779
dbo:wikiPageWikiLink
dbr:Elwyn_Berlekamp dbr:Greatest_common_divisor dbr:Unique_factorization_domain dbr:Row_echelon_form dbc:Computer_algebra dbr:Cantor–Zassenhaus_algorithm dbr:Computer_algebra dbr:Computer_algebra_system dbr:Discrete_logarithm dbr:Error_detection_and_correction dbr:The_Art_of_Computer_Programming dbr:Square-free_polynomial dbr:Ring_(mathematics) dbr:Irreducible_polynomial dbr:Identity_matrix dbr:WolframAlpha dbr:Matrix_(mathematics) dbr:Index_calculus_algorithm dbr:Quotient_ring dbr:Euclidean_domain dbr:Subalgebra dbc:Finite_fields dbr:Public-key_cryptography dbr:Factorization_of_polynomials dbr:Mathematics dbr:Factorization_of_polynomials_over_finite_fields dbr:Bell_Labs_Technical_Journal dbr:Kernel_(linear_algebra) dbr:Euclidean_algorithm
dbo:abstract
In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967. It was the dominant algorithm for solving the problem until the Cantor–Zassenhaus algorithm of 1981. It is currently implemented in many well-known computer algebra systems.
foaf:isPrimaryTopicOf
n6:Berlekamp's_algorithm