This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
n12http://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Alternating_multilinear_map
rdfs:label
Alternating multilinear map
rdfs:comment
In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space (for example, a bilinear form or a multilinear form) that is zero whenever any pair of arguments is equal. More generally, the vector space may be a module over a commutative ring. The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map with all arguments belonging to the same space.
owl:sameAs
yago-res:Alternating_multilinear_map
dbp:wikiPageUsesTemplate
dbt:Cite_book dbt:Reflist dbt:Short_description dbt:Section_link
dct:subject
dbc:Mathematical_relations dbc:Functions_and_mappings dbc:Multilinear_algebra
dbo:wikiPageInterLanguageLink
dbpedia-fr:Application_multilinéaire
prov:wasDerivedFrom
n12:Alternating_multilinear_map?oldid=1064606083&ns=0
dbo:wikiPageID
8200947
dbo:wikiPageLength
5055
dbo:wikiPageRevisionID
1064606083
dbo:wikiPageWikiLink
dbr:Alternating_algebra dbr:Permutation_group dbr:Unit_(ring_theory) dbr:Lattice_(group) dbc:Mathematical_relations dbr:Chain_complex dbr:Group_(mathematics) dbr:Mathematics dbr:Bilinear_map dbr:Antisymmetric_map dbr:Module_(mathematics) dbr:Cohomology dbc:Multilinear_algebra dbr:Bilinear_form dbr:Parity_of_a_permutation dbr:Commutative_ring dbr:Linear_independence dbr:Ring_(mathematics) dbr:Graduate_Texts_in_Mathematics dbr:Symmetrization dbr:Determinant dbr:Multilinear_algebra dbr:Multilinear_form dbr:Symmetric_function dbr:Lie_algebra dbr:Multilinear_map dbr:Map_(mathematics) dbc:Functions_and_mappings
dbo:abstract
In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space (for example, a bilinear form or a multilinear form) that is zero whenever any pair of arguments is equal. More generally, the vector space may be a module over a commutative ring. The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map with all arguments belonging to the same space.
foaf:isPrimaryTopicOf
n12:Alternating_multilinear_map