This HTML5 document contains 95 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
n15http://yago-knowledge.org/resource/A/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n5http://dbpedia.org/resource/File:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n2http://dbpedia.org/resource/A/
n11http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n16http://en.wikipedia.org/wiki/A/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
n2:B_testing
rdf:type
owl:Thing
rdfs:label
A/B testing
rdfs:comment
A/B testing (also known as bucket testing or split-run testing) is a user experience research methodology. A/B tests consist of a randomized experiment with two variants, A and B. It includes application of statistical hypothesis testing or "two-sample hypothesis testing" as used in the field of statistics. A/B testing is a way to compare two versions of a single variable, typically by testing a subject's response to variant A against variant B, and determining which of the two variants is more effective.
owl:sameAs
n15:B_testing freebase:m.0284x50
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Sfrac dbt:Reflist dbt:Software_testing dbt:Authority_control dbt:Citation_needed
dct:subject
dbc:Software_testing dbc:Market_research dbc:Experiments
dbo:thumbnail
n11:A-B_testing_example.png?width=300
foaf:depiction
n11:HTTP_AB_Testing.png n11:A-B_testing_example.png
gold:hypernym
dbr:Way
prov:wasDerivedFrom
n16:B_testing?oldid=1066551042&ns=0
dbo:wikiPageID
9332179
dbo:wikiPageLength
23764
dbo:wikiPageRevisionID
1066551042
dbo:wikiPageWikiLink
dbr:Two-sample_hypothesis_testing dbr:Gibbs_sampling dbr:Scientific_Advertising dbr:Mann–Whitney_U_test dbr:Network_effect n5:A-B_testing_example.png dbr:Binomial_distribution dbr:Response_rate_(survey) dbr:Database dbc:Market_research dbr:Network_traffic dbr:Traffic_shaping dbr:Controlling_for_a_variable dbr:Student's_t-test dbr:Barnard's_test dbr:Microsoft_Bing dbr:Claude_C._Hopkins dbr:Choice_modelling dbr:William_Sealy_Gosset dbr:Observation dbr:Click-through_rate dbr:Multi-armed_bandit dbr:User_agent dbr:Statistical_significance dbr:Test_statistic dbr:Scientific_control dbr:Randomized_experiment dbr:User_experience dbr:Statistics dbr:Variable_(mathematics) dbr:Evidence-based_practice dbr:Between-group_design dbr:Sampling_(statistics) dbr:Randomized_controlled_trial dbr:Political_campaign n5:HTTP_AB_Testing.png dbr:Normal_distribution dbr:OSI_model dbr:Fisher's_exact_test dbr:Observational_study dbc:Experiments dbr:Quasi-experiment dbr:Welch's_t-test dbr:Poisson_distribution dbr:Z-test dbr:Bias dbr:Facebook dbr:Estimator dbr:Customer_engagement dbc:Software_testing dbr:Null_hypothesis dbr:Hypertext_Transfer_Protocol dbr:LinkedIn dbr:Social_media dbr:Conversion_tracking dbr:Purchase_funnel dbr:Adaptive_control dbr:Multivariate_testing_in_marketing dbr:Average_revenue_per_user dbr:Microsoft dbr:Statistical_hypothesis_testing dbr:Mean dbr:Methodology dbr:Multivariate_random_variable dbr:Multivariate_statistics dbr:Reverse_proxy dbr:Chi-squared_test dbr:Multinomial_distribution dbr:Barack_Obama_2008_presidential_campaign dbr:Instagram dbr:Multinomial_test
dbo:abstract
A/B testing (also known as bucket testing or split-run testing) is a user experience research methodology. A/B tests consist of a randomized experiment with two variants, A and B. It includes application of statistical hypothesis testing or "two-sample hypothesis testing" as used in the field of statistics. A/B testing is a way to compare two versions of a single variable, typically by testing a subject's response to variant A against variant B, and determining which of the two variants is more effective.
foaf:isPrimaryTopicOf
n16:B_testing