About: Wolff algorithm     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

The Wolff algorithm, named after , is an algorithm for Monte Carlo simulation of the Ising model and Potts model in which the unit to be flipped is not a single spin (as in the heat bath or Metropolis algorithms) but a cluster of them. This cluster is defined as the set of connected spins sharing the same spin states, based on the Fortuin-Kasteleyn representation.

AttributesValues
rdfs:label
  • Wolff algorithm (en)
rdfs:comment
  • The Wolff algorithm, named after , is an algorithm for Monte Carlo simulation of the Ising model and Potts model in which the unit to be flipped is not a single spin (as in the heat bath or Metropolis algorithms) but a cluster of them. This cluster is defined as the set of connected spins sharing the same spin states, based on the Fortuin-Kasteleyn representation. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
has abstract
  • The Wolff algorithm, named after , is an algorithm for Monte Carlo simulation of the Ising model and Potts model in which the unit to be flipped is not a single spin (as in the heat bath or Metropolis algorithms) but a cluster of them. This cluster is defined as the set of connected spins sharing the same spin states, based on the Fortuin-Kasteleyn representation. The Wolff algorithm is similar to the Swendsen–Wang algorithm, but different in that the former only flips one randomly chosen cluster with probability 1, while the latter flip every cluster independently with probability 1/2. It is shown numerically that flipping only one cluster decreases the autocorrelation time of the spin statistics. The advantage of Wolff algorithm over other algorithms for magnetic spin simulations like single spin flip is that it allows non-local moves on the energy. One important consequence of this is that in some situations (e.g. ferromagnetic Ising model or fully frustrated Ising model), the scaling of the Multicanonic simulation is , better than , where z is the exponent associated with the critical slowing down phenomena. (en)
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software