In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation where denotes the conjugate transpose of the matrix . In component form, this means that for all indices and , where is the element in the -th row and -th column of , and the overline denotes complex conjugation. Imaginary numbers can be thought of as skew-adjoint (since they are like matrices), whereas real numbers correspond to self-adjoint operators.
Attributes | Values |
---|
rdfs:label
| - Skew-Hermitian matrix (en)
|
rdfs:comment
| - In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation where denotes the conjugate transpose of the matrix . In component form, this means that for all indices and , where is the element in the -th row and -th column of , and the overline denotes complex conjugation. Imaginary numbers can be thought of as skew-adjoint (since they are like matrices), whereas real numbers correspond to self-adjoint operators. (en)
|
sameAs
| |
dbp:wikiPageUsesTemplate
| |
Subject
| |
prov:wasDerivedFrom
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage revision ID
| |
has abstract
| - In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation where denotes the conjugate transpose of the matrix . In component form, this means that for all indices and , where is the element in the -th row and -th column of , and the overline denotes complex conjugation. Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers. The set of all skew-Hermitian matrices forms the Lie algebra, which corresponds to the Lie group U(n). The concept can be generalized to include linear transformations of any complex vector space with a sesquilinear norm. Note that the adjoint of an operator depends on the scalar product considered on the dimensional complex or real space . If denotes the scalar product on , then saying is skew-adjoint means that for all one has . Imaginary numbers can be thought of as skew-adjoint (since they are like matrices), whereas real numbers correspond to self-adjoint operators. (en)
|
foaf:isPrimaryTopicOf
| |
is Wikipage redirect
of | |
is Link from a Wikipage to another Wikipage
of | |