About: Ring of polynomial functions     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In mathematics, the ring of polynomial functions on a vector space V over a field k gives a coordinate-free analog of a polynomial ring. It is denoted by k[V]. If V is finite dimensional and is viewed as an algebraic variety, then k[V] is precisely the coordinate ring of V. If k is infinite, then k[V] is the symmetric algebra of the dual space . In applications, one also defines k[V] when V is defined over some subfield of k (e.g., k is the complex field and V is a real vector space.) The same definition still applies.

AttributesValues
rdfs:label
  • Ring of polynomial functions (en)
rdfs:comment
  • In mathematics, the ring of polynomial functions on a vector space V over a field k gives a coordinate-free analog of a polynomial ring. It is denoted by k[V]. If V is finite dimensional and is viewed as an algebraic variety, then k[V] is precisely the coordinate ring of V. If k is infinite, then k[V] is the symmetric algebra of the dual space . In applications, one also defines k[V] when V is defined over some subfield of k (e.g., k is the complex field and V is a real vector space.) The same definition still applies. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
has abstract
  • In mathematics, the ring of polynomial functions on a vector space V over a field k gives a coordinate-free analog of a polynomial ring. It is denoted by k[V]. If V is finite dimensional and is viewed as an algebraic variety, then k[V] is precisely the coordinate ring of V. The explicit definition of the ring can be given as follows. If is a polynomial ring, then we can view as coordinate functions on ; i.e., when This suggests the following: given a vector space V, let k[V] be the commutative k-algebra generated by the dual space , which is a subring of the ring of all functions . If we fix a basis for V and write for its dual basis, then k[V] consists of polynomials in . If k is infinite, then k[V] is the symmetric algebra of the dual space . In applications, one also defines k[V] when V is defined over some subfield of k (e.g., k is the complex field and V is a real vector space.) The same definition still applies. Throughout the article, for simplicity, the base field k is assumed to be infinite. (en)
foaf:isPrimaryTopicOf
is rdfs:seeAlso of
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software