About: Peptide computing     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

Peptide computing is a form of computing which uses peptides, instead of traditional electronic components. The basis of this computational model is the affinity of antibodies towards peptide sequences. Similar to DNA computing, the parallel interactions of peptide sequences and antibodies have been used by this model to solve a few NP-complete problems. Specifically, the hamiltonian path problem (HPP) and some versions of the set cover problem are a few NP-complete problems which have been solved using this computational model so far. This model of computation has also been shown to be computationally universal (or Turing complete).

AttributesValues
rdfs:label
  • Peptide computing (en)
rdfs:comment
  • Peptide computing is a form of computing which uses peptides, instead of traditional electronic components. The basis of this computational model is the affinity of antibodies towards peptide sequences. Similar to DNA computing, the parallel interactions of peptide sequences and antibodies have been used by this model to solve a few NP-complete problems. Specifically, the hamiltonian path problem (HPP) and some versions of the set cover problem are a few NP-complete problems which have been solved using this computational model so far. This model of computation has also been shown to be computationally universal (or Turing complete). (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
gold:hypernym
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
has abstract
  • Peptide computing is a form of computing which uses peptides, instead of traditional electronic components. The basis of this computational model is the affinity of antibodies towards peptide sequences. Similar to DNA computing, the parallel interactions of peptide sequences and antibodies have been used by this model to solve a few NP-complete problems. Specifically, the hamiltonian path problem (HPP) and some versions of the set cover problem are a few NP-complete problems which have been solved using this computational model so far. This model of computation has also been shown to be computationally universal (or Turing complete). This model of computation has some critical advantages over DNA computing. For instance, while DNA is made of four building blocks, peptides are made of twenty building blocks. The peptide-antibody interactions are also more flexible with respect to recognition and affinity than an interaction between a DNA strand and its reverse complement. However, unlike DNA computing, this model is yet to be practically realized. The main limitation is the availability of specific monoclonal antibodies required by the model. (en)
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software