About: Multiple instance learning     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In machine learning, multiple-instance learning (MIL) is a type of supervised learning. Instead of receiving a set of instances which are individually labeled, the learner receives a set of labeled bags, each containing many instances. In the simple case of multiple-instance binary classification, a bag may be labeled negative if all the instances in it are negative. On the other hand, a bag is labeled positive if there is at least one instance in it which is positive. From a collection of labeled bags, the learner tries to either (i) induce a concept that will label individual instances correctly or (ii) learn how to label bags without inducing the concept.

AttributesValues
rdfs:label
  • Multiple instance learning (en)
rdfs:comment
  • In machine learning, multiple-instance learning (MIL) is a type of supervised learning. Instead of receiving a set of instances which are individually labeled, the learner receives a set of labeled bags, each containing many instances. In the simple case of multiple-instance binary classification, a bag may be labeled negative if all the instances in it are negative. On the other hand, a bag is labeled positive if there is at least one instance in it which is positive. From a collection of labeled bags, the learner tries to either (i) induce a concept that will label individual instances correctly or (ii) learn how to label bags without inducing the concept. (en)
dbp:wikiPageUsesTemplate
Subject
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In machine learning, multiple-instance learning (MIL) is a type of supervised learning. Instead of receiving a set of instances which are individually labeled, the learner receives a set of labeled bags, each containing many instances. In the simple case of multiple-instance binary classification, a bag may be labeled negative if all the instances in it are negative. On the other hand, a bag is labeled positive if there is at least one instance in it which is positive. From a collection of labeled bags, the learner tries to either (i) induce a concept that will label individual instances correctly or (ii) learn how to label bags without inducing the concept. Babenko (2008) gives a simple example for MIL. Imagine several people, and each of them has a key chain that contains few keys. Some of these people are able to enter a certain room, and some aren’t. The task is then to predict whether a certain key or a certain key chain can get you into that room. To solve this problem we need to find the exact key that is common for all the “positive” key chains. If we can correctly identify this key, we can also correctly classify an entire key chain - positive if it contains the required key, or negative if it doesn't. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software