About: Instance-based learning     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In machine learning, instance-based learning (sometimes called memory-based learning) is a family of learning algorithms that, instead of performing explicit generalization, compare new problem instances with instances seen in training, which have been stored in memory. Because computation is postponed until a new instance is observed, these algorithms are sometimes referred to as "lazy." To battle the memory complexity of storing all training instances, as well as the risk of overfitting to noise in the training set, instance reduction algorithms have been proposed.

AttributesValues
rdfs:label
  • Instance-based learning (en)
rdfs:comment
  • In machine learning, instance-based learning (sometimes called memory-based learning) is a family of learning algorithms that, instead of performing explicit generalization, compare new problem instances with instances seen in training, which have been stored in memory. Because computation is postponed until a new instance is observed, these algorithms are sometimes referred to as "lazy." To battle the memory complexity of storing all training instances, as well as the risk of overfitting to noise in the training set, instance reduction algorithms have been proposed. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
gold:hypernym
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In machine learning, instance-based learning (sometimes called memory-based learning) is a family of learning algorithms that, instead of performing explicit generalization, compare new problem instances with instances seen in training, which have been stored in memory. Because computation is postponed until a new instance is observed, these algorithms are sometimes referred to as "lazy." It is called instance-based because it constructs hypotheses directly from the training instances themselves.This means that the hypothesis complexity can grow with the data: in the worst case, a hypothesis is a list of n training items and the computational complexity of classifying a single new instance is O(n). One advantage that instance-based learning has over other methods of machine learning is its ability to adapt its model to previously unseen data. Instance-based learners may simply store a new instance or throw an old instance away. Examples of instance-based learning algorithms are the k-nearest neighbors algorithm, kernel machines and RBF networks. These store (a subset of) their training set; when predicting a value/class for a new instance, they compute distances or similarities between this instance and the training instances to make a decision. To battle the memory complexity of storing all training instances, as well as the risk of overfitting to noise in the training set, instance reduction algorithms have been proposed. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software