In mathematics, a Hilbert–Schmidt integral operator is a type of integral transform. Specifically, given a domain (an open and connected set) Ω in n-dimensional Euclidean space Rn, a Hilbert–Schmidt kernel is a function k : Ω × Ω → C with (that is, the L2(Ω×Ω; C) norm of k is finite), and the associated Hilbert–Schmidt integral operator is the operator K : L2(Ω; C) → L2(Ω; C) given by Then K is a Hilbert–Schmidt operator with Hilbert–Schmidt norm Hilbert–Schmidt integral operators are both continuous (and hence bounded) and compact (as with all Hilbert–Schmidt operators). is compact. If
Attributes | Values |
---|
rdfs:label
| - Hilbert–Schmidt integral operator (en)
|
rdfs:comment
| - In mathematics, a Hilbert–Schmidt integral operator is a type of integral transform. Specifically, given a domain (an open and connected set) Ω in n-dimensional Euclidean space Rn, a Hilbert–Schmidt kernel is a function k : Ω × Ω → C with (that is, the L2(Ω×Ω; C) norm of k is finite), and the associated Hilbert–Schmidt integral operator is the operator K : L2(Ω; C) → L2(Ω; C) given by Then K is a Hilbert–Schmidt operator with Hilbert–Schmidt norm Hilbert–Schmidt integral operators are both continuous (and hence bounded) and compact (as with all Hilbert–Schmidt operators). is compact. If (en)
|
sameAs
| |
dbp:wikiPageUsesTemplate
| |
Subject
| |
prov:wasDerivedFrom
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
has abstract
| - In mathematics, a Hilbert–Schmidt integral operator is a type of integral transform. Specifically, given a domain (an open and connected set) Ω in n-dimensional Euclidean space Rn, a Hilbert–Schmidt kernel is a function k : Ω × Ω → C with (that is, the L2(Ω×Ω; C) norm of k is finite), and the associated Hilbert–Schmidt integral operator is the operator K : L2(Ω; C) → L2(Ω; C) given by Then K is a Hilbert–Schmidt operator with Hilbert–Schmidt norm Hilbert–Schmidt integral operators are both continuous (and hence bounded) and compact (as with all Hilbert–Schmidt operators). The concept of a Hilbert–Schmidt operator may be extended to any locally compact Hausdorff spaces. Specifically, let X be a locally compact Hausdorff space equipped with a positive Borel measure. Suppose further that L2(X) is a separable Hilbert space. The above condition on the kernel k on Rn can be interpreted as demanding k belong to L2(X × X). Then the operator is compact. If then K is also self-adjoint and so the spectral theorem applies. This is one of the fundamental constructions of such operators, which often reduces problems about infinite-dimensional vector spaces to questions about well-understood finite-dimensional eigenspaces. See Chapter 2 of the book by Bump in the references for examples. (en)
|
foaf:isPrimaryTopicOf
| |
is Wikipage redirect
of | |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |