has abstract
| - In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Mainardi equations or Gauss–Peterson–Codazzi Formulas) are fundamental formulas which link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold. The equations were originally discovered in the context of surfaces in three-dimensional Euclidean space. In this context, the first equation, often called the Gauss equation (after its discoverer Carl Friedrich Gauss), says that the Gauss curvature of the surface, at any given point, is dictated by the derivatives of the Gauss map at that point, as encoded by the second fundamental form. The second equation, called the Codazzi equation or Codazzi-Mainardi equation, states that the covariant derivative of the second fundamental form is fully symmetric. It is named for Gaspare Mainardi (1856) and Delfino Codazzi (1868–1869), who independently derived the result, although it was discovered earlier by Karl Mikhailovich Peterson. (en)
|