About: Gödel's completeness theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first order theory: If T is such a theory, and φ is a sentence (in the same language) and any model of T is a model of φ, then there is a (first-order) proof of φ using the statements of T as axioms. One sometimes says this as "anything true is provable".

AttributesValues
rdf:type
rdfs:label
  • Gödel's completeness theorem (en)
rdfs:comment
  • Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first order theory: If T is such a theory, and φ is a sentence (in the same language) and any model of T is a model of φ, then there is a (first-order) proof of φ using the statements of T as axioms. One sometimes says this as "anything true is provable". (en)
differentFrom
sameAs
dbp:wikiPageUsesTemplate
Subject
thumbnail
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Completude_logique_premier_ordre.png
gold:hypernym
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first order theory: If T is such a theory, and φ is a sentence (in the same language) and any model of T is a model of φ, then there is a (first-order) proof of φ using the statements of T as axioms. One sometimes says this as "anything true is provable". It makes a close link between model theory that deals with what is true in different models, and proof theory that studies what can be formally proven in particular formal systems. It was first proved by Kurt Gödel in 1929. It was then simplified when Leon Henkin observed in his Ph.D. thesis that the hard part of the proof can be presented as the Model Existence Theorem (published in 1949). Henkin's proof was simplified by Gisbert Hasenjaeger in 1953. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software