In probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution (after George Pólya). It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n. The Dirichlet parameter vector captures the prior belief about the situation and can be seen as a pseudocount: observations of each outcome that occur before the actual data is collected. The compounding corresponds to a Pólya urn scheme. It i
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
Subject | |
prov:wasDerivedFrom | |
Wikipage page ID |
|
page length (characters) of wiki page |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
has abstract |
|
foaf:isPrimaryTopicOf | |
is rdfs:seeAlso of | |
is Wikipage redirect of | |
is Link from a Wikipage to another Wikipage of |