About: Digital signal (signal processing)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Broadcaster, within Data Space : el.dbpedia.org associated with source document(s)

In the context of digital signal processing (DSP), a digital signal is a discrete time, quantized amplitude signal. In other words, it is a sampled signal consisting of samples that take on values from a discrete set (a countable set that can be mapped one-to-one to a subset of integers). If that discrete set is finite, the discrete values can be represented with digital words of a finite width. Most commonly, these discrete values are represented as fixed-point words (either proportional to the waveform values or companded) or floating-point words.

AttributesValues
rdf:type
rdfs:label
  • Digital signal (signal processing) (en)
rdfs:comment
  • In the context of digital signal processing (DSP), a digital signal is a discrete time, quantized amplitude signal. In other words, it is a sampled signal consisting of samples that take on values from a discrete set (a countable set that can be mapped one-to-one to a subset of integers). If that discrete set is finite, the discrete values can be represented with digital words of a finite width. Most commonly, these discrete values are represented as fixed-point words (either proportional to the waveform values or companded) or floating-point words. (en)
dbp:wikiPageUsesTemplate
Subject
thumbnail
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Digital.signal.discret.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Discrete_cosine.svg
gold:hypernym
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In the context of digital signal processing (DSP), a digital signal is a discrete time, quantized amplitude signal. In other words, it is a sampled signal consisting of samples that take on values from a discrete set (a countable set that can be mapped one-to-one to a subset of integers). If that discrete set is finite, the discrete values can be represented with digital words of a finite width. Most commonly, these discrete values are represented as fixed-point words (either proportional to the waveform values or companded) or floating-point words. The process of analog-to-digital conversion produces a digital signal. The conversion process can be thought of as occurring in two steps: 1. * sampling, which produces a continuous-valued discrete-time signal, and 2. * quantization, which replaces each sample value by an approximation selected from a given discrete set (for example by truncating or rounding). It can be shown that an analog signal can be reconstructed after conversion to digital (down to the precision afforded by the quantization used), provided that the signal has negligible power in frequencies above the Nyquist limit and does not saturate the quantizer. Common practical digital signals are represented as 8-bit (256 levels), 16-bit (65,536 levels), 24-bit (16.8 million levels) and 32-bit (4.3 billion levels) using pulse-code modulation where the number of quantization levels is not necessarily limited to powers of two. A floating point representation is used in many DSP applications. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software