About: Clapeyron's theorem (elasticity)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In the linear theory of elasticity Clapeyron's theorem states that the potential energy of deformation of a body, which is in equilibrium under a given load, is equal to half the work done by the external forces computed assuming these forces had remained constant from the initial state to the final state. It is named after the French scientist Benoît Clapeyron. Another theorem, the theorem of three moments used in bridge engineering is also sometimes called Clapeyron's theorem.

AttributesValues
rdfs:label
  • Clapeyron's theorem (elasticity) (en)
rdfs:comment
  • In the linear theory of elasticity Clapeyron's theorem states that the potential energy of deformation of a body, which is in equilibrium under a given load, is equal to half the work done by the external forces computed assuming these forces had remained constant from the initial state to the final state. It is named after the French scientist Benoît Clapeyron. Another theorem, the theorem of three moments used in bridge engineering is also sometimes called Clapeyron's theorem. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
Link from a Wikipage to an external page
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In the linear theory of elasticity Clapeyron's theorem states that the potential energy of deformation of a body, which is in equilibrium under a given load, is equal to half the work done by the external forces computed assuming these forces had remained constant from the initial state to the final state. It is named after the French scientist Benoît Clapeyron. For example consider a linear spring with initial length L0 and gradually pull on the spring until it reaches equilibrium at a length L1 when the pulling force is F. By the theorem, the potential energy of deformation in the spring is given by: The actual force increased from 0 to F during the deformation; the work done can be computed by integration in distance. Clapeyron's equation, which uses the final force only, may be puzzling at first, but is nevertheless true because it includes a corrective factor of one half. Another theorem, the theorem of three moments used in bridge engineering is also sometimes called Clapeyron's theorem. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software