About: Canonical Huffman code     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In computer science and information theory, a canonical Huffman code is a particular type of Huffman code with unique properties which allow it to be described in a very compact manner. Data compressors generally work in one of two ways. Either the decompressor can infer what codebook the compressor has used from previous context, or the compressor must tell the decompressor what the codebook is. Since a canonical Huffman codebook can be stored especially efficiently, most compressors start by generating a "normal" Huffman codebook, and then convert it to canonical Huffman before using it.

AttributesValues
rdfs:label
  • Canonical Huffman code (en)
rdfs:comment
  • In computer science and information theory, a canonical Huffman code is a particular type of Huffman code with unique properties which allow it to be described in a very compact manner. Data compressors generally work in one of two ways. Either the decompressor can infer what codebook the compressor has used from previous context, or the compressor must tell the decompressor what the codebook is. Since a canonical Huffman codebook can be stored especially efficiently, most compressors start by generating a "normal" Huffman codebook, and then convert it to canonical Huffman before using it. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
gold:hypernym
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In computer science and information theory, a canonical Huffman code is a particular type of Huffman code with unique properties which allow it to be described in a very compact manner. Data compressors generally work in one of two ways. Either the decompressor can infer what codebook the compressor has used from previous context, or the compressor must tell the decompressor what the codebook is. Since a canonical Huffman codebook can be stored especially efficiently, most compressors start by generating a "normal" Huffman codebook, and then convert it to canonical Huffman before using it. In order for a scheme such as the Huffman code to be decompressed, the same model that the encoding algorithm used to compress the source data must be provided to the decoding algorithm so that it can use it to decompress the encoded data. In standard Huffman coding this model takes the form of a tree of variable-length codes, with the most frequent symbols located at the top of the structure and being represented by the fewest bits. However, this code tree introduces two critical inefficiencies into an implementation of the coding scheme. Firstly, each node of the tree must store either references to its child nodes or the symbol that it represents. This is expensive in memory usage and if there is a high proportion of unique symbols in the source data then the size of the code tree can account for a significant amount of the overall encoded data. Secondly, traversing the tree is computationally costly, since it requires the algorithm to jump randomly through the structure in memory as each bit in the encoded data is read in. Canonical Huffman codes address these two issues by generating the codes in a clear standardized format; all the codes for a given length are assigned their values sequentially. This means that instead of storing the structure of the code tree for decompression only the lengths of the codes are required, reducing the size of the encoded data. Additionally, because the codes are sequential, the decoding algorithm can be dramatically simplified so that it is computationally efficient. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (71 GB total memory, 1010 MB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software