The Brooks–Iyengar algorithm or Brooks–Iyengar hybrid algorithm is a distributed algorithm that improves both the precision and accuracy of the interval measurements taken by a distributed sensor network, even in the presence of faulty sensors. The sensor network does this by exchanging the measured value and accuracy value at every node with every other node, and computes the accuracy range and a measured value for the whole network from all of the values collected. Even if some of the data from some of the sensors is faulty, the sensor network will not malfunction. The algorithm is fault-tolerant and distributed. It could also be used as a sensor fusion method. The precision and accuracy bound of this algorithm have been proved in 2016.
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
Subject | |
thumbnail | |
foaf:depiction | |
gold:hypernym | |
prov:wasDerivedFrom | |
Wikipage page ID |
|
page length (characters) of wiki page |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
has abstract |
|
foaf:isPrimaryTopicOf | |
is Wikipage redirect of | |
is Link from a Wikipage to another Wikipage of | |
is known for of | |
is foaf:primaryTopic of |