About: Solovay–Kitaev theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In quantum information and computation, the Solovay–Kitaev theorem says, roughly, that if a set of single-qubit quantum gates generates a dense subset of SU(2) then that set is guaranteed to fill SU(2) quickly, which means any desired gate can be approximated by a fairly short sequence of gates from the generating set. Robert M. Solovay initially announced the result on an email list in 1995, and Alexei Kitaev independently gave an outline of its proof in 1997. Solovay also gave a talk on his result at MSRI in 2000 but it was interrupted by a fire alarm. Christopher M. Dawson and Michael Nielsen call the theorem one of the most important fundamental results in the field of quantum computation.

AttributesValues
rdfs:label
  • Solovay–Kitaev theorem (en)
rdfs:comment
  • In quantum information and computation, the Solovay–Kitaev theorem says, roughly, that if a set of single-qubit quantum gates generates a dense subset of SU(2) then that set is guaranteed to fill SU(2) quickly, which means any desired gate can be approximated by a fairly short sequence of gates from the generating set. Robert M. Solovay initially announced the result on an email list in 1995, and Alexei Kitaev independently gave an outline of its proof in 1997. Solovay also gave a talk on his result at MSRI in 2000 but it was interrupted by a fire alarm. Christopher M. Dawson and Michael Nielsen call the theorem one of the most important fundamental results in the field of quantum computation. (en)
dbp:wikiPageUsesTemplate
Subject
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
has abstract
  • In quantum information and computation, the Solovay–Kitaev theorem says, roughly, that if a set of single-qubit quantum gates generates a dense subset of SU(2) then that set is guaranteed to fill SU(2) quickly, which means any desired gate can be approximated by a fairly short sequence of gates from the generating set. Robert M. Solovay initially announced the result on an email list in 1995, and Alexei Kitaev independently gave an outline of its proof in 1997. Solovay also gave a talk on his result at MSRI in 2000 but it was interrupted by a fire alarm. Christopher M. Dawson and Michael Nielsen call the theorem one of the most important fundamental results in the field of quantum computation. A consequence of this theorem is that a quantum circuit of constant-qubit gates can be approximated to error (in operator norm) by a quantum circuit of gates from a desired finite universal gate set. By comparison, just knowing that a gate set is universal only implies that constant-qubit gates can be approximated by a finite circuit from the gate set, with no bound on its length. So, the Solovay–Kitaev theorem shows that this approximation can be made surprisingly efficient, thereby justifying that quantum computers need only implement a finite number of gates to gain the full power of quantum computation. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is known for of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (71 GB total memory, 1009 MB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software